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Abstract—This paper studies the problem of semi-supervised
learning on graphs, which has recently aroused widespread
interest in relational data mining. The focal point of exploration
in this area has been the utilization of graph neural networks
(GNNs), which stand out for excellent performance. Previous
methods, however, typically rely on the limited labeled data while
ignoring the abundant structural information in unlabeled nodes
inherently on graphs, easily resulting in overfitting, especially
in scenarios where only a few label nodes are available. Even
worse, GNNs, despite their success, are constrained by their
ability to solely capture local neighborhood information through
message-passing mechanisms, thereby falling short in modeling
higher-order dependencies among nodes. To circumvent the
above drawbacks, we propose a simple yet effective framework
called Hypergraph COnsistency LeArning (HOLA). Specifically,
we employ a collaborative distillation framework consisting of
a teacher network and a student network. To achieve effective
interaction, we propose momentum distillation, a self-training
method that enables the student network to learn from pseudo-
targets generated by a momentum teacher network. Further,
a novel hypergraph structure learning network is developed to
model complex high-order relations among nodes with relational
consistency learning, thereby transferring the knowledge to the
student network. Extensive experiments conducted on a variety
of benchmark datasets demonstrate the superior performance of
the HOLA over various state-of-the-art methods.

Index Terms—Graph Neural Networks, Semi-supervised
Learning, Consistency Learning, Hypergraph Learning

I. INTRODUCTION

Graphs serve as highly effective and natural representations
for modeling structured and relational data across a diverse
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range of domains and applications [1], [2]. This versatility
is particularly promising in areas such as multimedia, where
the intricate relationships and dependencies between different
elements can be effectively captured and analyzed through
graph structures. In multimedia applications, graphs prove
instrumental in representing connections between various mul-
timedia components, facilitating tasks such as image or video
categorization [3], [4], content recommendation [5]–[7], and
multimedia data retrieval [8]–[10]. Beyond multimedia, graphs
find utility in social networks [11], [12], biology [13], [14], and
transportation systems [15], [16], showcasing their versatility
in representing connections and dependencies within different
datasets. The inherent flexibility of graphs makes them foun-
dational in various data-driven applications and analyses.

In recent years, there has been a notable surge in interest and
exploration of graph neural networks (GNNs) to analyze and
understand graph-structured data. At the core, GNNs leverage
a message passing mechanism [17], effectively unifying vertex
attributes and graph topology. By harnessing the message-
passing paradigm, GNNs excel in learning expressive node
representations, enabling them to capture intricate relation-
ships and dependencies within graphs. The popularity of
GNNs can be attributed to their outstanding performance
across a myriad of downstream tasks. These tasks include
node classification [18]–[20], graph classification [21]–[24]
and graph clustering [25]–[27]. Among these, we investigate
semi-supervised node classification in this paper, with the goal
of predicting the categories of unlabeled nodes in a given graph
using only a small number of labeled nodes.

The landscape of semi-supervised node classification has
witnessed the emergence of several remarkable methods [19],
[28]–[31]. For example, MVGRL [29] introduces a self-
supervised method for node representation learning by con-
trasting encodings from two structural views—first-order
neighbors and graph diffusion. GRACE [31] maximizes node-
level agreement through contrastive representation learning,
employing graph views generated by edge removal and node
feature masking for effective node embedding alignment.
CG3 [31] combines a contrastive loss for enhanced node
representations with labeled and unlabeled data, along with a
graph generative loss for additional supervision by extracting
relationships between data features and graph topology. CLN-
ode [19] develops a novel framework using a multi-perspective
difficulty measurer and a continuous training scheduler to
address challenging nodes, progressing from easy to difficult
nodes. These methods have contributed substantially to the
progress and breakthroughs in the field, paving the way for
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more sophisticated approaches in this domain.
Despite the widespread success in semi-supervised node

classification, previous methods suffer from two major lim-
itations. On the one hand, they usually concentrate on fitting
the labeled data using GNNs but ignore the unlabeled data
inherently on graphs. This issue may lead to easy overfitting,
especially when annotated labels are scarce. For example,
in social network analysis, focusing solely on users with
known preferences or attributes might lead to an incomplete
understanding of the network structure. Neglecting users with
latent characteristics, which provide crucial information about
community structures and interconnections, could result in
a biased representation of social relationships. On the other
hand, GNNs typically follow the neighbor aggregation in the
message passing mechanism [17], resulting in each node rely-
ing only on neighbors within a few hops, thus capturing limited
local information. Besides, modeling high-order dependencies
between nodes is crucial for exploring global information
in the graph, while existing methods fail to address this
effectively, leading to sub-optimal performance. For instance,
in biochemistry networks modeling protein interactions, a
GNN constrained to nearby neighbors may overlook critical
interactions that occur through intermediary proteins. Proteins
with high-order dependencies, forming complex biological
pathways, may be inadequately represented [13].

In this paper, we attempt to address these limitations by
developing a simple yet powerful approach called Hypergraph
COnsistency LeArning (HOLA) for semi-supervised node
classification on graphs. Technically, our HOLA first intro-
duces a collaborative distillation framework, consisting of
a teacher network and a student network. To cooperatively
supervise and deeply interact with each other, we develop
momentum distillation, which can be interpreted as a form of
online self-distillation, where the student network learns from
confident pseudo-targets generated by the momentum teacher
network, while the teacher network serves as the ensemble of
exponential-moving-average versions of the student network.
Note that the collaborative distillation framework can only
capture local neighborhood information through the GNN
network. To better explore the global semantic structure within
the graph, we develop a novel hypergraph structure learn-
ing network to encode high-order connectivity among nodes
and high-level interactions of hyperedge features, thus better
characterizing the global data correlations beyond pairwise
relationships. Further, relational consistency learning is pro-
posed to distill the high-order semantics from the hypergraph
and transfer this knowledge to the student network, guiding
its optimization process. To summarize, this work makes the
following contributions:
• We propose a novel approach for semi-supervised node

classification on graphs, which contains a collaborative
distillation framework coupled with the updation strategy of
momentum distillation, thereby producing confident pseudo-
targets to sufficiently explore the unlabeled data.

• To explore the global semantics within the graph, we intro-
duce hypergraph structure learning combined with relational
consistency learning to guide the student network by distill-
ing high-order semantics from the hypergraph.

• Comprehensive experiments on a variety of benchmark
datasets show that HOLA achieves superior performance
compared with state-of-the-art approaches.

II. RELATED WORK

A. Graph Neural Networks

Graph Neural Networks (GNNs) have garnered significant
attention in recent years due to their remarkable success
in modeling complex relationships within graph-structured
data [1], [32]. The widespread adoption of GNNs can be
attributed to their ability to capture intricate dependencies
and patterns, making them a cornerstone in various appli-
cations [33]–[35]. Existing GNN methods in the literature
typically fall into two main categories: those grounded in
spectral graph theory and those based on spatial approaches.
Spectral graph theory-driven approaches leverage the eigenval-
ues and eigenvectors of the graph Laplacian matrix to uncover
hidden structures within the data. Notable methods such as
Graph Convolutional Networks (GCNs) [36] and ChebNet [37]
have demonstrated state-of-the-art performance by effectively
leveraging graph Laplacian eigen-decomposition. On the other
hand, spatial approaches focus on the local neighborhood rela-
tionships between nodes and emphasize the local connectivity
patterns of nodes. GraphSAGE [38] and SGC [39] exem-
plify this category, employing node sampling and aggregation
mechanisms to capture spatial dependencies. Despite these
advancements, existing approaches may encounter challenges
in capturing higher-order dependencies or effectively handling
diverse graph structures. In contrast, our model HOLA stands
out by leveraging hypergraph structure learning to capture
high-order semantics, followed by relational consistency learn-
ing to allow effective knowledge transfer.

B. Semi-supervised Learning

Semi-supervised learning (SSL) has gained prominence in
machine learning due to its ability to leverage both labeled and
unlabeled data, offering a cost-effective solution for training
models in scenarios where obtaining labeled data is expensive
or impractical [18]. The primary objective of SSL is to improve
model generalization by utilizing the additional information
embedded in unlabeled samples. Current SSL methods can be
broadly categorized into three main classes: those based on
self-training, consistency regularization, and knowledge distil-
lation. Specifically, self-training methods hinge on iteratively
expanding the labeled dataset by confidently predicting labels
for unlabeled samples. A representative technique like pseudo-
labeling effectively leverages the model’s own predictions
to iteratively refine its learning [40]. Consistency regulariza-
tion introduces the notion of encouraging model predictions
to be consistent under various perturbations of the input
data. Methods like Virtual Adversarial Training (VAT) [41]
and MixMatch [42] enforce the model to produce stable
predictions across different augmentations or perturbations.
Knowledge distillation involves transferring knowledge from
a teacher model to a student model, where the teacher model
is typically a well-trained model with high accuracy. This
process encourages the student model to mimic the soft labels
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or intermediate representations produced by the teacher [43].
Recent approaches such as RKD [44] showcase the potential
of knowledge distillation in SSL, offering improved gener-
alization and robustness. Our proposed method HOLA is
akin to the framework of knowledge distillation, where we
develop a collaborative distillation framework composed of
a teacher network and a student network. This framework
encourages mutual enhancement between the two networks,
utilizes relational consistency learning to more effectively
transfer high-order relational semantic knowledge from the
graph and to guide the optimization of the student network.

C. Hypergraph Learning

Hypergraph learning has emerged as a prominent field
within machine learning, demonstrating remarkable success
in capturing and modeling complex relationships in data [45],
[46]. The primary aim of hypergraph learning is to extend
traditional graph-based models by accommodating higher-
order interactions and dependencies present in real-world
datasets. This approach provides a more expressive repre-
sentation of data, enabling improved performance in various
applications [47], [48]. Existing hypergraph learning methods
can be categorized into three key components, each addressing
specific aspects of hypergraph modeling: hypergraph construc-
tion, hypergraph-based representation learning, and hyper-
graph convolution operations. The first component involves the
creation of hypergraphs from raw data. Notable methods [49],
[50] focus on constructing hyperedges that capture higher-
order relationships among data points. There are also learning
methods that directly target hypergraph-structured data [51],
[52]. LE [51] proposes a hypergraph expansion method, which
effectively transforms hypergraphs into simple graphs while
preserving higher-order relationships. WHATsNet [52] devel-
ops a hypergraph neural network designed to address the prob-
lem of classifying edge-dependent node labels in hypergraphs
by capturing node relationships within each hyperedge through
attention mechanisms and positional encodings. Hypergraph-
based representation learning aims to derive informative node
embeddings from the hypergraph structure. CHGNN [53]
employs self-supervised contrastive learning for knowledge
transfer, utilizing an adaptive hypergraph view generator, an
improved encoder, and a joint loss function to enhance view
generation and node classification. The third component in-
volves the development of hypergraph convolution operations.
Techniques such as [54] employs attention mechanisms and
neural network architectures to effectively capture and prop-
agate information through hypergraph nodes. Different from
these methods, our HOLA introduces learnable hypergraph
structure learning, reducing complexity while enhancing the
flexibility and effectiveness of learned node representations
for semi-supervised node classification.

III. METHODOLOGY

A. Problem Definition

A graph is denoted as G = (V, E), where V represents a
set of N nodes in the graph and E ⊆ V × V is the edge set
of the graph. xi ∈ RF is the attribute feature of node vi,

where F is the dimension of attributes. Besides, each node vi
corresponds to an one-hot label vector yi ∈ {0, 1}K where
K is the class number. M(M < N) nodes have labels YL in
semi-supervised scenarios, while the labels of the remaining
N−M nodes are unavailable. The objective is to estimate the
missing labels YU for unlabeled nodes on graphs. Figure 1
presents a whole depiction of our HOLA.

B. Graph Neural Networks (GNNs)

In this section, we describe the GNN as the core component
of our proposed HOLA. Recently, GNNs have become a go-
to solution for encapsulating both node features and graph
topology. For a node vi in the vertex set V , its embedding at
layer k is represented by h

(k)
i . The neighborhood aggregation

in GNNs [17] involves a two-step process: aggregating the
embeddings from vi’s neighbors at layer k − 1 and then
combining these with the node’s own embedding from the
previous layer to form a cohesive representation at layer k.
Formally, the neighborhood aggregation process of GNNs can
be formulated as:

h
(k)
N (vi)

= AGG(k)
θ

({
h
(k−1)
j

}
vj∈N (vi)

)
,

h
(k)
i = COM(k)

θ

(
h
(k−1)
i ,h

(k)
N (vi)

)
,

(1)

in which N (vi) represents the neighbors of vi. AGG(k)
θ and

COM(k)
θ denote the aggregation and combination operators at

the k-th layer, respectively. After K GNN layers, the output
embedding vector hK

i (denoted as hi for simplicity in the
following sections) can be used for prediction in various
downstream tasks.

Nevertheless, neighborhood propagation schemes are usu-
ally fixed in GNNs, resulting in each node being heavily
dependent on its attributes and neighbors. When it comes to
noise attacks on node attributes and connection patterns, the
network may be misled during message-passing schemes. As
a result, we propose two augmentations on graphs to facilitate
the generation of the disturb-invariant representations.

• Attribute Masking: We randomly select a subset of
nodes and mask a portion of their attributes based on
the assumption that introducing controlled randomness
during training fosters a more robust learning process.

• Edge Dropping: We randomly drop certain edges from
the graph following an i.i.d uniform distribution, moti-
vated by the hypothesis that inducing controlled sparsity
in the graph, through random edge removal, can lead to
improved generalization and robustness.

We denote the augmented version of G as G̃. After the
graph neural network, we fed the node representation hi into
a Multi-Layer Perception (MLP) to obtain the corresponding
prediction vector pi ∈ RK . For conciseness, we stack the
prediction vectors into a matrix P ∈ R|V|×K as:

P = Φθ(G), (2)

where θ is the parameter of the GNN network.
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Fig. 1. The illustration of our proposed framework HOLA.

C. Graph Collaborative Distillation

In this section, we introduce a collaborative distillation
framework, which consists of two graph neural networks with
the same architecture, i.e., student network Φθ and teacher net-
work Φϕ. A slight difference from knowledge distillation [43]
is that we only optimize the student network with a standard
gradient update. To produce accurate prediction as guidance,
the original graph G is fed into the teacher network while the
augmented graph G̃ is fed into the student network.

To increase the robustness of our model, we randomly drop
some edges or attributes of G, denoted as G̃ before being
fed into the student network while the original graph is fed
into the teacher network. Let P and Q ∈ R|V|×K denote
the matrix of predicted class distribution produced by the
student network and teacher network, respectively. Formally,
P = Φθ(G̃), Q = Φϕ(G), where the row vectors pi and
qi denote the predictions of two networks for vi. Then, we
illustrate our detailed learning objectives in our collaborative
distillation framework for semi-supervised scenarios.

Supervised Loss. In semi-supervised node classification,
ground-truth labels are available for M nodes on graphs. We
utilize the conventional cross-entropy loss function to train
the labeled nodes within the augmented graphs of the student
network. Formally,

ℓs = −
1

|YL|
∑
i∈YL

y⊤
i logpi. (3)

Teacher-Student Consistency Loss. In semi-supervised set-
tings, we propose a novel consistency learning to further
explore a large number of unlabeled nodes on graphs. In-
spired by recent techniques, i.e., pseudo-labeling [55] and
consistency learning [42], we first generate a pseudo-target for
each unlabeled node through the teacher network, and then
enforce the student network to produce similar predictions.
Specifically, we only retain “hard” labels (i.e., the arg max of

the prediction distribution) based on the output of the teacher
network. Formally, the pseudo-target is defined as:

q̂i = argmax(qi). (4)

Note that we only preserve pseudo-targets whose largest
class probability falls above a predefined threshold τ . Then
we leverage pseudo-targets to guide the learning of the student
network. Formally, the teacher-student consistency loss is
formulated as:

ℓt = −
1

|YU |
∑
i∈YU

1(max(qi)≥τ)q̂
⊤
i logpi, (5)

where q̂i ∈ RK is one-hot pseudo-target q̂i and 1(·) is an
indicator function that returns 1 if the condition is satisfied
and 0 otherwise.

Remark. Our consistency loss can be interpreted as a hybrid
of two major semi-supervised learning strategies, i.e., pseudo-
labeling and consistency regularization. On the one hand,
previous pseudo-labeling approaches [55] retain labels with
the largest class probability over a predefined threshold. On
the other hand, consistency learning approaches [42] explore
the unlabeled data with the assumption that the network
should produce similar predictions under random data trans-
formations, while our novel consistency loss involves one-hot
pseudo-target as well as confidence measurement to output
confident and disturb-invariant predictions.

Connection between Consistency Learning and Con-
trastive Learning. Contrastive learning (CL) [56], [57] shares
a similar idea with our consistency learning that leverages the
availability of pairs of semantically “similar” data points under
different data augmentations, while the difference lies in CL
additionally incorporates negative samples and forces the inner
product of representations of similar pairs with each other to
be higher on average than with negative samples.
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D. Hypergraph Consistency Learning

Through the collaborative distillation framework on graphs,
we can effectively leverage the information from unlabeled
nodes using pseudo-labeling and consistency regularization
techniques, thereby alleviating the issue of overfitting. Never-
theless, GNNs commonly employ the message-passing mech-
anism [17] to capture local neighborhood information, which
restricts each node to depend solely on neighbors within a
few hops, thereby failing to explore high-order dependencies
among nodes. To tackle this, we resort to hypergraphs to model
complex higher-order dependencies in the graph.
Hypergraph Structure Learning. Previous methods typically
construct predefined hypergraphs based on distances [58],
representations [59], or attributes [60], which often lead to
sub-optimal performance and high computational costs due to
their inflexibility. To address this, we parameterize a learnable
hypergraph structure and optimize it jointly with the network
parameters. To efficiently model the hypergraph structural
matrix instead of learning the dense adjacency matrix with
high computational cost, we employ a low-rank strategy to
flexibly learn the hypergraph structural matrix Λ ∈ R|V|×c (c
denote the number of hyperedges) as follows:

Λ = H ·W , (6)

where H ∈ R|V|×d is the hidden embedding matrix of the
original graph derived from the teacher network. W ∈ Rd×c

is learnable weight matrix of hyperedges. In this way, learning
the hypergraph structural matrix only takes O(c × d) time
complexity (d << |V|), largely achieving model efficiency.

To effectively capture complex feature interactions and
high-order dependencies among nodes, we design a hyper-
graph convolution to extract high-level feature information.
First, we learn hyperedge embeddings by aggregating con-
nected neighbors. Afterward, the learned hyperedge embed-
dings are used to globally update the node embeddings.
Specifically, the hyperedge embedding matrix R ∈ Rc×d can
be calculated as:

R = σ
(
UΛ⊤H

)
+Λ⊤H, (7)

where extra trainable matrix U ∈ Rc×c implicitly character-
izes the correlation among hyperedges. σ(·) denotes the activa-
tion function. Then, the updated node embeddings Z ∈ R|V|×d

can be refined as:

Z = Λ ·R = Λ
(
σ
(
UΛ⊤H

)
+Λ⊤H

)
. (8)

Relational Consistency Loss. We have obtained node embed-
dings through hypergraph structure learning, which globally
models the high-order interaction information among nodes.
How to inject this knowledge into the student network is an
urgent problem to be solved. To address this, we propose a
novel relational consistency learning that effectively combines
the interaction information among nodes from both global and
local perspectives.

Specifically, let S ∈ R|V|×d denote the embedding matrix
derived from the student network, and Z ∈ R|V|×d is the node
embedding matrix from the hypergraph learning described
above. We first randomly select a subset of labeled nodes as

Algorithm 1 Optimization framework of our HOLA
Require: Graph G = (V, E), attribute feature set {xi}vi∈V ,

label set YL, parameters θ and ϕ in student network and
teacher network respectively, training epochs T ;

Ensure: Predicted lables YU for the unlabeled nodes.
1: Train the student network only using YL via Eq. (3);
2: for t = 1 to T do
3: Generate pseudo-targets for unlabeled nodes through

the teacher network via Eq. (4);
4: Compute teacher-student consistency loss via Eq. (5);
5: Compute relational consistency loss via Eq. (11);
6: Compute overall learning objective ℓ via Eq. (12).
7: Update parameters θ in student network through stan-

dard gradient descent via Eq. (13);
8: Update parameters ϕ in teacher network through mo-

mentum distillation via Eq. (13);
9: Re-compute supervised Loss via Eq. (3) for next epoch;

10: end for

anchor nodes to store in the memory bank and update them
through a queue mechanism to reduce memory costs. For a
given unlabeled node, we calculate the relational similarity
distribution between its embedding representation si with the
embedding representations {st}Tt=1 of anchor nodes via the
student network branch, which can be calculated as:

Pi
t =

exp (cos (si, st) /τ)∑T
t′=1 exp (cos (si, st′) /τ)

, (9)

where τ is the temperature parameter set to 0.5 following [56].
cos(a, b) = a·b

∥a∥2∥b∥2
is the cosine similarity.

Similarly, the relational similarity distribution in the hyper-
graph learning branch can be generated in an analogous way:

Qi
t =

exp (cos (zi, zt) /τ)∑T
t′=1 exp (cos (zi, zt′) /τ)

. (10)

In this way, we propose a relational consistency loss
to encourage the consistency between distributions Pi =[
Pi
1, . . . ,Pi

T

]
and Qi =

[
Qi

1, . . . ,Qi
T

]
by minimizing the

Kullback-Leibler (KL) Divergence between them, which can
be defined as follows:

ℓr =
1

|YU |
∑
i∈YU

1

2

(
DKL

(
Pi∥Qi

)
+DKL

(
Qi∥Pi

))
. (11)

E. Optimization and Inference

In a nutshell, our overall learning objective is a combination
version of supervised loss, teacher-student consistency loss
and relational consistency loss. Formally, the final loss of our
proposed HOLA is defined as:

ℓ = ℓs + αℓt + βℓr, (12)

where α, β are weight coefficients used to control their respec-
tive contributions. In the experiments, we set α = β = 0.1.

During optimization, the student network is optimized with
standard gradient descent with relational distillation while the
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TABLE I
STATISTICS OF DATASETS USED IN EXPERIMENTS.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3
Amazon Computers 13,752 245,861 767 10
Amazon Photo 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15

teacher network is optimized through the updating strategy of
momentum distillation as follows:{

θ ← θ − η ∂ℓ
∂θ

ϕ← ϵϕ+ (1− ϵ)θ,
(13)

where η denotes the learning rate and ϵ is a momentum
coefficient. In this way, parameters in the teacher network
evolve smoothly. When it comes to inference, we feed the
original graph into the teacher network followed by an MLP
classifier, and output prediction distribution for each node. The
whole optimization procedure is depicted in Algorithm 1.

IV. EXPERIMENTS

In this section, we demonstrate the efficacy of our HOLA
by conducting comprehensive experiments on six real-world
datasets. The key highlights of our findings include:

• Our HOLA consistently demonstrates significantly better
performance than all competing baselines across various
experimental settings.

• We conduct ablation studies to dissect the impact and
efficiency of the different components incorporated within
our HOLA, providing insights into how each contributes
to its overall effectiveness.

• Our method exhibits stable performance across a range
of key hyper-parameters, demonstrating robustness and
reliability in practical applications.

• We conduct a case study to effectively showcase the high-
order dependencies among nodes through the discerned
hypergraph structure, thereby highlighting the efficacy of
the hypergraph structure learning module.

A. Experimental Settings

Datasets. Our HOLA is evaluated across six widely adopted
benchmark datasets, encompassing various domains. These
datasets consist of three paper citation networks, i.e., Cora,
CiteSeer, and PubMed [61], [62], two purchasing network
datasets sourced from Amazon, namely Amazon Computers
and Amazon Photo [63], and one co-author network dataset
named Coauthor CS [63]. In the paper citation datasets, nodes
represent publications, and edges signify citation relationships,
with the primary goal being the classification of these nodes
into distinct subject areas. In the Amazon-derived purchasing
networks, nodes are products, and edges connect frequently

co-purchased items. The Coauthor CS dataset represents a co-
authorship network, with nodes as authors and edges signi-
fying collaborative authorship. An overview of the datasets’
characteristics is presented in Table I.

For three citation datasets, we adopt the same splits with
[31] to create train/validation/test datasets. For the other three
datasets, the training set and validation set both contain 20
labeled nodes per class, and the rest make up the test set.
Compared Baselines. To assess the merits and efficacy of
our developed framework HOLA, we benchmark it against
state-of-the-art baseline models which are widely recognized
for their proficiency in semi-supervised node classification on
graphs. These models include Chebyshev [37], GCN [36],
GAT [64], SGC [39], DGI [28], MVGRL [29], AM-GCN [65],
GRACE [30], CG3 [31], CLNode [19], SuperGAT [66], Gap-
former [67] and RCL [68].
Implementation Details. In all baseline methods and our own
approach, we employ a two-layer GCN [36] as the standard
GNN backbone for a fair comparison. The GNN backbone
consists of two GCN layers with hidden dimensions 64 for
three citation network datasets and 256 for the other three
datasets. The momentum coefficient ϵ is set to 0.99 following
[69] and the threshold τ for defining the largest class of
pseudo-labels is set to 0.9. We utilize the Adam optimizer,
setting the initial learning rate to 0.01 and employing a decay
rate of 0.0005. Throughout our experiments, we present the av-
erage accuracy results and their standard deviations, calculated
from five separate trials. Hyperparameters are tuned using
the validation dataset, while the test dataset is employed to
determine the final performance. The parameters for baseline
methods are adopted from their respective original papers,
following their recommended tuning strategies for optimal
performance.

B. Experimental Results

Table II presents the comparative results across all six
datasets, revealing the following insights:
• GCN-based approaches (GCN, GAT and SGC) consistently

outperform the traditional Chebyshev method. This su-
periority underscores the advanced representation-learning
capabilities inherent in GCN, playing a pivotal role in
significantly enhancing the performance of semi-supervised
node classification tasks.

• Among the various methods considered, those leverag-
ing unlabeled data (DGI, MVGRL, AM-GCN, GRACE,
CG3, CLNode, SuperGAT and our HOLA) consistently
demonstrate superior performance. This underscores the
critical role of exploring additional unlabeled data via self-
supervised and semi-supervised techniques as an essential
supplement for enhancing overall performance.

• Our proposed method HOLA shows competitive perfor-
mance across most datasets. Compared to the leading base-
line, SuperGAT, our HOLA outperforms it on 4 out of 6
datasets. This advantage may stem from our approach’s
focus on enhancing semantic learning from a different angle.
By integrating relational consistency learning within the
collaborative distillation framework, our method effectively
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TABLE II
CLASSIFICATION ACCURACY RESULTS (IN %) FROM TEN ITERATIONS ON SIX BENCHMARK DATASETS. THE TOP-PERFORMING RESULTS ARE

HIGHLIGHTED IN BOLD, WHILE THE RUNNER-UP RESULTS ARE UNDERLINED. ‘OOM’ INDICATES RESULTS OF MEMORY OVERFLOW.

Methods Cora CiteSeer PubMed Amazon Amazon Coauthor
Computers Photo CS

Chebyshev [37] 80.7±0.2 70.2±0.6 77.4±0.1 72.5±0.0 88.4±0.1 90.4±0.2
GCN [36] 81.3±0.4 71.5±0.2 78.8±0.6 77.7±0.7 88.1±0.8 91.6±0.7
GAT [64] 82.7±0.1 70.7±0.4 78.5±0.2 79.5±0.2 88.0±0.6 91.2±0.5
SGC [39] 77.7±0.0 72.6±0.0 76.4±0.0 74.8±0.1 87.9±0.1 90.2±0.2
DGI [28] 80.9±0.3 71.4±0.2 76.3±1.1 77.7±0.8 85.3±0.9 90.6±0.5
MVGRL [29] 81.3±0.4 71.9±0.1 79.3±0.1 79.5±0.8 88.1±0.2 91.7±0.1
AM-GCN [65] 81.0±0.3 72.8±0.4 OOM 80.9±0.7 91.3±0.2 OOM
GRACE [30] 82.8±0.3 71.3±0.7 79.0±0.2 75.1±0.1 83.2±0.1 91.2±0.2
CG3 [31] 83.5±0.3 73.7±0.2 79.2±0.6 80.5±0.1 90.0±0.2 92.4±0.1
CLNode [19] 82.5±0.6 73.3±0.6 80.3±0.9 80.1±0.8 90.5±1.0 92.5±0.6
SuperGAT [66] 84.3±0.6 72.6±0.7 81.7±0.4 81.6±0.4 91.8±0.7 90.2±0.5
Gapformer [67] 83.4±0.3 72.3±0.4 80.1±0.3 81.2±0.6 91.3±0.5 91.8±0.5
RCL [68] 81.7±0.5 71.9±0.5 79.0±0.4 81.4±0.4 89.1±0.6 91.2±0.4

HOLA (Ours) 84.2±0.5 73.9±0.6 80.6±0.4 81.8±0.6 92.2±0.7 93.4±0.4

leverages both global and local information and explores
unlabeled data. In contrast, SuperGAT improves perfor-
mance by incorporating edge self-supervision within the
graph attention design.

C. Impact of Label Rates

To gain a deeper understanding of our HOLA’s performance
under varying levels of supervision, we conduct experiments
with different proportions of labeled samples to assess its
adaptability. Following the approach outlined in [31], we
systematically varied the label rates on the Cora and CiteSeer
datasets in 0.5%, 1%, 2%, 3%, 5%, 10%, 20%, 50%. The
results are presented in Tables III and IV.

Across the diverse label rate settings, our proposed frame-
work HOLA outperforms the baseline methods in most set-
tings. This robust performance demonstrates the remarkable
versatility of our HOLA in handling datasets with scarce
supervision. In situations where labeled samples are severely
limited, our approach HOLA exhibits a substantial perfor-
mance advantage over the baseline methods. This observation
underscores the efficacy of our consistency learning module,
which plays a significant role in enhancing learning when
confronted with minimal supervision.

D. Sensitivity Analysis

In this section, we delve deeper into the impact of hyper-
parameters within the HOLA framework, specifically focus-
ing on three crucial aspects: the number of hyperedges, the
pseudo-target threshold, and the embedding dimension within
the hidden layer.

To begin, we explore the impact of numbers of hyperedges
c, considering a range of values from 16 to 512. The results,
as depicted in Figure 2, uncover intriguing trends. Initially,
increasing the value of c is associated with a notable en-
hancement in performance. This observation suggests that a

TABLE III
CLASSIFICATION ACCURACY RESULTS (IN %) ON THE CORA DATASET FOR

VARYING LABEL RATES.

Label Rate 0.5% 1% 2% 3% 5% 10% 20% 50%

Chebyshev 37.9 59.4 73.5 76.1 80.7 82.6 82.4 82.9
GCN 47.8 63.9 72.7 76.4 81.3 82.1 85.0 86.5
GAT 57.1 70.9 74.3 78.2 82.7 83.4 85.3 87.2
SGC 48.4 66.5 69.7 73.9 77.7 78.9 81.2 79.9
DGI 68.0 73.4 76.7 78.3 80.9 81.2 81.3 81.6
MVGRL 57.6 67.6 76.2 77.8 81.3 83.8 84.5 84.9
GRACE 63.8 73.5 75.2 76.2 82.8 83.6 84.4 85.9
CG3 68.1 74.2 77.3 79.1 83.5 84.3 85.1 86.6
CLNode 63.1 68.1 75.0 76.0 82.5 83.2 84.3 85.9
SuperGAT 64.0 72.3 77.3 81.3 84.3 85.1 85.5 86.6
Gapformer 65.3 72.7 76.9 79.6 83.1 83.9 85.2 86.9
RCL 62.9 71.5 69.2 76.2 81.7 82.8 83.6 87.8

HOLA(Ours) 70.0 76.9 77.8 80.6 84.2 84.6 87.5 88.3

TABLE IV
CLASSIFICATION ACCURACY RESULTS (IN %) ON THE CITESEER DATASET

FOR VARYING LABEL RATES.

Label Rate 0.5% 1% 2% 3% 5% 10% 20% 50%

Chebyshev 34.0 58.3 64.6 67.2 70.2 71.7 72.2 75.7
GCN 47.6 55.8 65.3 69.2 71.5 72.6 73.4 77.6
GAT 53.2 63.9 68.3 69.5 71.2 72.1 75.1 79.0
SGC 46.8 59.3 67.1 68.6 72.7 73.0 74.5 78.8
DGI 61.0 65.8 67.5 68.8 71.6 72.3 73.1 76.5
MVGRL 61.3 65.1 68.5 70.3 71.2 72.8 73.1 74.8
GRACE 61.8 62.5 70.7 71.4 71.9 73.0 74.2 76.6
CG3 62.9 70.1 70.9 71.7 73.9 74.5 74.8 77.2
CLNode 61.3 67.2 68.4 70.8 73.9 74.4 75.0 78.3
SuperGAT 59.8 66.1 68.6 72.3 73.9 74.2 75.1 78.7
Gapformer 61.5 67.3 69.4 72.0 73.6 73.8 74.7 78.8
RCL 59.9 65.8 67.5 71.8 72.6 73.0 74.2 78.5

HOLA 63.5 70.6 71.3 72.8 74.1 74.9 75.2 79.3

higher number of hyperedges allows the model to capture more
complex relationships and dependencies among nodes, thereby
improving its representation power. However, it is crucial to
note that pushing the value of c to excessively high levels can

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3543068

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on February 19,2025 at 06:49:08 UTC from IEEE Xplore.  Restrictions apply. 



8

16 32 64 128 256 512
Number of hyperedges c

75.0

80.0

85.0

A
cc

ur
ac

y 
(%

)

Cora CiteSeer

(a) Cora and CiteSeer

16 32 64 128 256 512
Number of hyperedges c

78.0

80.0

82.0

84.0

A
cc

ur
ac

y 
(%

)

PubMed Amazon Computers

(b) Pubmed and Amazon Computers

16 32 64 128 256 512
Number of hyperedges c

89.0

90.0

91.0

92.0

93.0

94.0

A
cc

ur
ac

y 
(%

)

Amazon Photo Coauthor CS

(c) Amazon Photo and Coauthor CS

Fig. 2. Sensitivity analysis w.r.t. different settings of hyperedge number c on all six datasets.
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Fig. 3. Sensitivity analysis w.r.t. different settings of pseudo labeling threshold τ on all six datasets.

16 32 64 128 256 512
Embedding dimensions

75.0

80.0

85.0

A
cc

ur
ac

y 
(%

)

Cora CiteSeer

(a) Cora and CiteSeer

16 32 64 128 256 512
Embedding dimensions

78.0

80.0

82.0

84.0

A
cc

ur
ac

y 
(%

)

PubMed Amazon Computers

(b) Pubmed and Amazon Computers

16 32 64 128 256 512
Embedding dimensions

89.0

90.0

91.0

92.0

93.0

94.0

A
cc

ur
ac

y 
(%

)

Amazon Photo Coauthor CS

(c) Amazon Photo and Coauthor CS

Fig. 4. Sensitivity analysis w.r.t. different settings of embedding dimensions on all six datasets.

result in a decline in performance. This phenomenon might
be attributed to the generation of overly intricate hyperedge-
specific cross-node structures when using a large number of
hyperedges. These intricate structures could introduce noise
and unnecessary complexity into the model, ultimately im-
pairing its ability to generalize effectively. We also determine
an optimal configuration for the hyperparameter c that results
in peak performance. This peak performance is achieved with
c set to 32 for smaller datasets like Cora and CiteSeer, while
larger values of c (e.g., 64 or 128) are necessary for larger-
scale datasets.

We further investigate the impact of the pseudo-targets
threshold parameter τ , which is varied across values of {0.75,
0.8, 0.9, 0.95, 0.99} to assess its influence on the model’s
performance. The experimental results are demonstrated in
Figure 3. From the results, we observe an initial improvement
in performance as the τ value increased, followed by a
subsequent decline when the threshold grew too large. This
behavior can be attributed to that as τ increases, it imposes a
stricter criterion for the inclusion of pseudo-labels during the

training process, and the pseudo-labels are more reliable for
the robust training of the model. However, when the threshold
is raised over large, a considerable portion of the training
data falls short of meeting the rigorous confidence criteria
for pseudo-labels, leading to a reduction in the available pool
of training data. In light of these observations, we identify
optimal τ values that strike a balance between leveraging
sufficiently reliable training samples and avoiding the incor-
poration of potentially mislabeled or noisy data. Specifically,
our experiments indicate that τ values of 0.8 were optimal
for datasets such as Cora and PubMed, while a value of 0.85
yielded the best results for CiteSeer. For the remaining three
datasets, a τ value of 0.9 is proved to be most effective.

Finally, we explore the impact of varying embedding di-
mensions within the hidden layer, considering a range of
values in {16, 32, 64, 128, 256, 512}, while keeping other
settings constant. The results are depicted in Figure 4, which
reveal that as the embedding dimension increases initially,
we observe a corresponding improvement in performance
across all datasets. This outcome can be attributed to the
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TABLE V
PERFORMANCE COMPARISON WITH VARIANTS IN ABLATION STUDY (IN %).

Methods Cora CiteSeer PubMed Amazon Amazon Coauthor
Computers Photo CS

HOLA w/o aug 83.2±0.6 72.0±0.7 80.0±0.6 80.8±0.5 91.6±0.5 92.7±0.7
HOLA w both aug 83.0±0.6 72.6±0.7 80.1±0.7 81.1±0.7 92.0±0.7 93.0±0.5
HOLA w reverse aug 82.8±0.5 72.3±0.6 79.7±0.8 80.7±0.6 91.5±0.5 92.4±0.7
HOLA w/o tscl 82.1±0.7 71.0±0.8 79.8±0.8 80.1±0.7 91.1±0.9 92.7±0.6
HOLA w/o rcl 81.7±0.8 70.3±0.9 78.9±0.8 77.6±0.9 90.6±0.8 91.9±0.7
HOLA w/o mom 83.2±0.7 70.6±0.8 79.6±0.8 81.1±0.7 91.2±0.7 92.4±0.6

HOLA (Ours) 84.2±0.5 73.9±0.6 80.6±0.4 81.8±0.6 92.2±0.7 93.4±0.4

fact that a larger embedding dimension allows the model to
capture more intricate features, thereby enhancing the quality
of representations. However, beyond a certain point, increasing
the embedding dimension ceases to yield substantial benefits,
and the performance levels off. This behavior suggests that
there is an optimal range for the embedding dimension, where
it strikes a balance between capturing complex features and
preventing overfitting.

E. Ablation Study

In this experimental section, we embark on an in-depth
analysis of the core components that constitute our proposed
HOLA. We systematically evaluate the impact of five model
variants by comparing them with the full model, with each
variant involving the removal of a specific aspect of our
framework while keeping the other components intact:
• HOLA w/o aug: We exclude the augmentation strategies

applied to the input of the student network.
• HOLA w both aug: We deploy augmentation strategies to

both the input of the student and teacher networks.
• HOLA w reverse aug: We implement a reverse augmen-

tation operation for the two networks, using the original
graph for the student network and applying the augmentation
strategies to the teacher network.

• HOLA w/o tscl: We eliminate the teacher-student learning
mechanism, relying solely on hypergraph consistency learn-
ing to enhance dual branch learning.

• HOLA w/o hcl: We discard hypergraph consistency learn-
ing, relying exclusively on teacher-student consistency
learning to harness the information from unlabeled data.

• HOLA w/o mom: We replace the momentum update of the
teacher network with supervised loss.
The ablation study results, presented in Table V, provide

valuable insights into the individual contributions of the core
components within our HOLA framework. Firstly, when we
examine the performance of HOLA w/o aug, we observe a no-
ticeable decline in its performance. This outcome underscores
the significance of our data augmentation strategies, which not
only enhance the robustness of our method but also play a cru-
cial role in maintaining its overall effectiveness. Additionally,
using the same augmentation for both networks has a negative
impact on the performance, as it reduces the diversity of the
data. When we apply the reverse augmentation strategy to

obtain HOLA w reverse aug, we observed a performance drop
in testing compared to HOLA w both aug. A possible reason
is that the student network, trained on the original graph, is un-
able to transfer parameters with semantic perturbation invari-
ance to the teacher network through momentum updates. This
causes the embeddings generated by the teacher network, using
the augmented graph, to potentially contain noise, leading
to less accurate pseudo-targets and hypergraph embeddings,
resulting in sub-optimal performance. Secondly, a comparison
between HOLA and HOLA w/o tscl reveals that our full model
outperforms the variant lacking the teacher-student consistency
learning component. This result validates the importance of
the teacher-student learning mechanism in our framework. By
leveraging the reliable pseudo-labeling mechanism, our model
benefits from the knowledge transfer between the teacher and
student networks, leading to improved performance. Thirdly,
the removal of the hypergraph consistency learning module
results in the most noticeable performance decline. This de-
cline highlights the role of hypergraph consistency learning
in our framework, which captures the complex higher-order
dependencies between various sub-structures and enhances the
model’s effectiveness. Moreover, we observe a performance
drop when replacing the momentum update with supervised
learning for the teacher network. This change appears to make
the teacher network less consistent, resulting in unreliable
guidance for the student. Finally, while the model variants
excluding specific components can still perform reasonably
well due to the effectiveness of the remaining components, it
is essential to note that they consistently exhibit a decline in
performance when compared to the full model. This consistent
performance drop in the variants reaffirms the effectiveness of
each component within our framework.

F. Visualization Analysis

We carry out a case study using the Cora dataset to
illustrate the hypergraph structure that was discerned by the
HOLA, thus demonstrating the effectiveness of the hypergraph
structure learning module. Within the Cora dataset, each node
is symbolic of scientific papers, which are sorted into one of
seven distinct categories, with the edges indicating the citations
between them. To facilitate a more clear demonstration, we
select a subgraph of the entire citation network, focusing on
only 8 hyperedges.
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(a) Original Graph (b) Learned Hypergraph

Fig. 5. Visualization of the original graph and hypergraph structure learned by
HOLA (only demonstrating the subgraph of the Cora dataset and 8 hyperedges
for simplicity).

Figure 5(a) shows that each paper in the citation network
links to merely a small number of neighboring papers, posing a
challenge in modeling complex interactions. Additionally, the
sparsity of the network, where many nodes are not intercon-
nected, hampers the flow of information between them. In Fig-
ure 5(b), we present a portion of the hyperedges derived from
our hypergraph structure learning module. As can be seen from
the figure, many nodes that are initially unconnected in the
original graph, are now engaged in information propagation
within the hypergraph. The hypergraph structure enables nodes
within the network to engage in higher-order interactions,
effectively capturing more complex and intricate relationships
within the complete network. The outcomes indicate that our
module is exceptionally skilled at discerning complex node
relationships beyond pairwise interactions, thereby offering
substantial flexibility in modeling complex data structures.

V. CONCLUSION

In this paper, we propose a simple yet effective model
HOLA for semi-supervised node classification on the graph.
Our HOLA possesses a collaborative distillation framework
where the teacher network produces confident pseudo-targets
to guide the learning of the student network and the teacher
network is momentum updated from the knowledge distilled
by the student network. Further, a novel relational consistency
learning with hypergraph structure learning is developed to
model complex high-order correlations among nodes, trans-
ferring the knowledge to the student network. Comprehensive
experimental evaluations across six benchmark datasets sub-
stantiate the efficacy of our HOLA. For future research endeav-
ors, we aim to delve deeper into the intrinsic exploration of
higher-order semantics within graphs, gaining a fundamental
understanding of the operational mechanisms of graphs. We
expect to adapt our technology to more intricate scenarios,
such as few-shot and zero-shot learning. Additionally, we
plan to enhance the generalization capabilities of graph-based
models by incorporating promising large language models.
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