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Abstract
In this paper, we study semi-supervised graph
classification, which aims at accurately predicting
the categories of graphs in scenarios with limited
labeled graphs and abundant unlabeled graphs.
Despite the promising capability of graph neu-
ral networks (GNNs), they typically require a
large number of costly labeled graphs, while a
wealth of unlabeled graphs fail to be effectively
utilized. Moreover, GNNs are inherently limited
to encoding local neighborhood information us-
ing message-passing mechanisms, thus lacking
the ability to model higher-order dependencies
among nodes. To tackle these challenges, we pro-
pose a Hypergraph-Enhanced DuAL framework
named HEAL for semi-supervised graph classifi-
cation, which captures graph semantics from the
perspective of the hypergraph and the line graph,
respectively. Specifically, to better explore the
higher-order relationships among nodes, we de-
sign a hypergraph structure learning to adaptively
learn complex node dependencies beyond pair-
wise relations. Meanwhile, based on the learned
hypergraph, we introduce a line graph to capture
the interaction between hyperedges, thereby bet-
ter mining the underlying semantic structures. Fi-
nally, we develop a relational consistency learning
to facilitate knowledge transfer between the two
branches and provide better mutual guidance. Ex-
tensive experiments on real-world graph datasets
verify the effectiveness of the proposed method
against existing state-of-the-art methods.
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1. Introduction
Graph classification, which involves identifying the class
labels of graphs, is a significant problem with diverse prac-
tical applications in various fields. Data originating from
domains such as bioinformatics, chemoinformatics, and so-
cial network analysis, can naturally be represented as graphs.
For example, molecules in chemoinformatics can be repre-
sented as graphs by viewing atoms as nodes and chemical
bonds between pairs of atoms as edges. The objective of this
task is to effectively recognize the class label of each graph,
such as predicting the quantum mechanical properties (Hao
et al., 2020; Ju et al., 2023a) and assessing the functionality
of chemical compounds (Kojima et al., 2020).

To solve this problem, early methods leverage the idea of
graph kernels that compute a similarity measure between
graphs by comparing their substructures (Kashima et al.,
2003; Shervashidze et al., 2009; 2011), and have been
proven to effectively capture the structural properties of
graphs. Despite their efficacy, graph kernels may face chal-
lenges in scalability and computational efficiency when
dealing with large datasets or complex graphs. Recently,
graph neural networks (GNNs) (Kipf & Welling, 2016; Ju
et al., 2024a) have emerged as a prominent and powerful
paradigm for graph classification (Mao et al., 2023; Yi et al.,
2023b; Luo et al., 2023c). The key idea of GNNs is to learn
effective graph representations by iteratively aggregating
information from neighboring nodes (Gilmer et al., 2017),
which have achieved remarkable success.

However, most prevailing methods typically follow the
framework of supervised learning, which demands a sub-
stantial amount of labeled graphs to train GNN models.
However, in the field of graph analytics, obtaining labeled
graphs can be a costly endeavor. Annotating graph data re-
quires expert domain knowledge, manual efforts, and often
extensive human involvement, making the process time-
consuming and expensive. For instance, molecular labels
are often acquired through costly Density Functional Theory
(DFT) calculations or generated from complex experiments
in the field of chemistry (Hao et al., 2020; Ju et al., 2023a).
This scarcity of labeled graphs and the high cost of annota-
tion pose significant challenges for developing accurate and
robust GNNs for graph classification.
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This inspires us to study semi-supervised graph classifica-
tion, where we leverage both labeled and unlabeled graphs.
Despite the unavailability of properties (i.e., labels) in the
unlabeled graphs, their structures contain valuable informa-
tion that could potentially enrich the capabilities of GNNs
if utilized effectively. Actually, there are several approaches
along this line (Li et al., 2019; Hao et al., 2020; Luo et al.,
2022; Ju et al., 2022; 2023b). ASGN (Hao et al., 2020)
adopts a teacher-student framework to fully utilize labeled
and unlabeled graphs. DualGraph (Luo et al., 2022) incor-
porates contrastive learning to encourage the consistency of
unlabeled graphs in a dual manner. KGNN (Ju et al., 2022)
and TGNN (Ju et al., 2023b) unify the GNNs and graph
kernels in a semi-supervised framework.

Despite the encouraging performance achieved by existing
methods, they still suffer from two key limitations. First,
GNNs are restricted to capturing only low-order local neigh-
borhood information and struggle to model high-order de-
pendencies between nodes. For instance, in chemoinformat-
ics, GNNs may be unable to effectively capture the complex
interactions and long-range dependencies between atoms
in a molecule, thereby potentially limiting their ability to
accurately predict properties like molecular activity or tox-
icity. Second, the utilization of unlabeled graphs remains
underexploited, despite their containing valuable structural
information. The unlabeled graphs can act as a regular-
izer, facilitating the exploration of intrinsic graph semantics,
even in the presence of a scarce amount of labeled graphs.
For example, in social network analysis, there might be a
large amount of unlabeled user interaction graphs, yet these
graphs hold insightful community structures and social re-
lationships. As such, we are highly desired to look for an
approach that is able to better capture high-order dependen-
cies among nodes and meanwhile sufficiently leverage the
unlabeled graphs to overcome the scarcity of labeled graphs.

To address these challenges, in this paper we propose a
Hypergraph-Enhanced DuAL framework named HEAL for
semi-supervised graph classification. The key idea of HEAL
is to capture graph semantics from the perspective of the
hypergraph and the line graph, respectively. Specifically, to
explore the intricate interdependencies among nodes, we de-
velop a learnable hypergraph structure learning, which pos-
sesses the remarkable ability to adaptively acquire higher-
order node relationships beyond pairwise connections, and
is more flexible to model complex data structures than pre-
defined hypergraph construction. Moreover, due to the pres-
ence of higher-order semantic interactions in complex data
structures, we hence leverage the learned hypergraph to in-
troduce a line graph, effectively capturing the interactions
between hyperedges, thus unlocking deeper insights into the
underlying semantic structures of graphs. Finally, since the
hypergraph and the line graph explore graph semantics at dif-
ferent levels of higher-order structures, it is crucial to jointly

train these two branches to enable mutual knowledge trans-
fer between them. We thus present relational consistency
learning, in which two branches are required to produce
consistent similarity scores for each unlabeled graph. By
encouraging the consistency between two similarity distri-
butions, our method effectively enhances the potential of the
model by fully using unlabeled graphs, thereby better serv-
ing the semi-supervised graph classification. Experiments
validate the effectiveness of our proposed model HEAL.

2. Problem Definition & Preliminaries
Definition 1. A graph can be defined as G = (V,E,X,y),
where V is a set of nodes, and E is a set of edges. X ∈
R|V |×df denotes the feature matrix of nodes, where df is
the dimension of features. y is the class label of graph G
and A ∈ {0, 1}|V |×|V | represents the adjacency matrix.

Definition 2. A hypergraph is a generalization of a graph
where edges are allowed to connect more than two nodes.
Formally, a hypergraph is represented as H = (V,EH),
where V is the node set same as in graph G, and EH is the
set of hyperedges, which can contain any number of nodes.
Each hyperedge eh ∈ EH is a subset of the node set V .

Definition 3. A line graph of the hypergraph is de-
fined as a graph L(H) = (VL, EL), where each node
vl ∈ VL corresponds to an edge in H , and two nodes in
VL are adjacent in L(H) if and only if the corresponding
edges in H share a common node (Whitney, 1992). For-
mally, VL = {vl : vl ∈ EH}, and EL =

{(
vli , vlj

)
: vli ,

vlj ∈ EH ,
∣∣vli ∩ vlj

∣∣ ≥ 1
}

. The weight of each edge Wi,j

is assigned to Wi,j =
∣∣vli ∩ vlj

∣∣ / ∣∣vli ∪ vlj
∣∣.

Semi-supervised Graph Classification. Given a set of
graphs G = {GL,GU}, in which GL =

{
G1, · · · , G|GL|

}
are labeled graphs and GU =

{
G|GL|+1, · · · , G|GL|+|GU |

}
are unlabeled graphs. the problem of semi-supervised graph
classification can be defined as learning a mapping function
from graphs to class labels f : G → Y to predict the labels
of GU , where Y represents the labels corresponding to G.

GNN-based Encoder. The general mechanism of GNNs
is to iteratively update node embeddings by aggregating
the information of its neighbor nodes via message-passing
(Gilmer et al., 2017). Formally, the node embeddings H =
[h1,h2, . . . ,h|V |]

⊤ ∈ R|V |×d can be updated as:

H = σ(ÂXW), Â = D̃− 1
2 ÃD̃− 1

2 , (1)

where Ã = A+ I, D̃ is the degree matrix of Ã, W is the
trainable weight matrix, and σ(·) is the activation function.
Then the whole graph representation hG can be computed
based on all node embeddings as:

hG =
∑|V |

i=1
hi. (2)
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Figure 1: Illustration of the proposed framework HEAL.

3. Methodology
In this section, we introduce our HEAL framework for
semi-supervised graph classification, which captures graph
semantics from both the hypergraph and line graph per-
spectives. HEAL consists of three modules: hypergraph
high-order dependency learning, graph convolution on the
line graph, and relational consistency learning. Figure 1
provides an overview of the whole framework.

3.1. Hypergraph High-order Dependency Learning

GNNs have achieved significant success in learning expres-
sive representations. However, they are inherently limited to
capturing only local neighborhood information via message-
passing mechanisms (Gilmer et al., 2017) and cannot effec-
tively capture higher-order substructures. This limitation is
crucial since many real-world graph data exhibit complex
hierarchical relationships that extend beyond immediate
neighbors. To address this issue, we propose using hyper-
graphs to overcome the aforementioned limitation of GNNs.
Hypergraphs (Feng et al., 2019) provide a more powerful
framework for modeling higher-order dependencies and in-
teractions among nodes, enabling us to better capture the
rich structural information present in the graphs.

Hypergraph Structure Learning. Existing approaches
typically construct hypergraphs using predefined criteria
based on distances (Yu et al., 2012), representations (Wang
et al., 2015), or attributes (Huang et al., 2015). However,
these methods may suffer from sub-optimal performance
and high computational costs due to their lack of flexibil-
ity. To overcome these limitations, we develop a flexible
way to parameterize a learnable hypergraph structure, being
optimized jointly with the network parameters. Neverthe-
less, directly learning a dense adjacency matrix could incur
excessive computational overhead, so we instead adopt a

low-rank strategy to efficiently model the hypergraph struc-
tural matrix Λ ∈ R|V |×k, where k represents the number of
hyperedges, calculated as:

Λ = H ·W, (3)

where H ∈ R|V |×d is the hidden embedding matrix derived
from the GNN-based encoder, and d is the dimension of
hidden embeddings. We introduce a learnable weight matrix
W ∈ Rd×k to model the hyperedges. As a result, learning
the hypergraph structural matrix requires only O(k × d)
time complexity (d << |V |), which significantly improves
model efficiency without compromising performance.

Hypergraph Convolution. After obtaining a flexible hyper-
graph, we can effectively capture higher-order dependencies
among nodes. To achieve this, we design a hypergraph con-
volution to learn high-level node representations. First, we
learn hyperedge embeddings by aggregating neighbor nodes
connected in the hypergraph. Then, the acquired hyperedge
embeddings are leveraged to perform higher-order updates
on the node representations. Technically, the hyperedge
embedding matrix R ∈ Rk×d is computed as follows:

R = σ
(
UΛ⊤H

)
+Λ⊤H, (4)

where U ∈ Rk×k denotes the additional trainable matrix,
and σ(·) is the activation function. Afterward, the updated
node embeddings S = [s1, s2, . . . , s|V |]

⊤ ∈ R|V |×d can be
calculated as follows:

S = Λ ·R = Λ
(
σ
(
UΛ⊤H

)
+Λ⊤H

)
. (5)

In this way, the updated node representations can effec-
tively capture high-order semantic features. Finally, for
each graph, the graph-level representation sG can be ob-
tained by summing all the refined node representations as:

sG =
∑|V |

i=1
si. (6)
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3.2. Graph Convolution on the Line Graph

Hypergraph modeling empowers our model to capture high-
order semantic features and long-range dependencies. How-
ever, we argue that real-world graphs may involve interac-
tions among higher-order substructures, whose interactions
often reveal underlying meaningful semantic patterns. For
instance, in biology, certain graph motifs may interact and
collectively determine the properties of the graph (Borg-
wardt et al., 2005; Chen et al., 2006).

To this end, we leverage the learned hypergraph to introduce
the line graph, effectively capturing interactions among hy-
peredges and providing a more profound exploration of the
underlying semantic structure of the graph. Specifically,
based on the hypergraph adjacency matrix Λ ∈ R|V |×k, we
can construct the line graph L(G) = (VL, EL) according to
the Definition 3, where each node feature of the line graph
is represented by the previously mentioned hyperedge em-
beddings R ∈ Rk×d, and the adjacency matrix is denoted
by AL ∈ Rk×k. Then, we can treat the line graph as a
regular graph and adopt a GNN-based encoder to obtain its
graph-level representation tG, which is calculated as:

T = σ(ÂLRW), ÂL = D̃
− 1

2

L ÃLD̃
− 1

2

L ,

tG =
∑k

i=1
ti,

(7)

where T = [t1, t2, . . . , tk]
⊤ ∈ Rk×d, ÃL = AL + I, D̃L

is the degree matrix of ÃL, W is the trainable weight matrix.
In this way, the representation tG can be viewed as another
perspective of the original graph, considering interactions
among high-order substructures and better capturing the
underlying semantic structure.

3.3. Relational Consistency Learning

Having acquired the graph representations from the two
perspectives, i.e., sG from the hypergraph view and tG from
the line graph view, they capture semantic knowledge of the
graph from different levels. More specifically, when we re-
gard nodes within the same hyperedge as a substructure, the
hypergraph convolution and line graph convolution channels
within our network can be viewed as distinct perspectives
describing intra-substructure and inter-substructure informa-
tion. Thus, it is natural to consider how to integrate these
two representations, enabling them to mutually supervise
and reinforce each other.

Furthermore, in semi-supervised scenarios, the availabil-
ity of limited label annotations often leads to unreliable
and biased pseudo labels. As a result, striving to align the
graph representations or pseudo labels of the same instance
directly might not prove to be the most effective strategy,
especially for unlabeled graphs. To address this challenge,
we suggest enhancing the representation of each instance by

transfering knowledge among instances. This is achieved by
comparing the similarities of the instance to other labeled
graphs in the embedding spaces of the two branches.

Technically, we begin by randomly selecting a subset of
labeled graphs {G1, . . . , GM} ∈ GL as anchor graphs,
which are stored in a memory bank. Then, we employ two
branches to embed these anchor graphs, yielding the respec-
tive representations {sm}Mm=1 and {tm}Mm=1. To ensure
that the anchor graphs sufficiently cover the neighborhoods
of any unlabeled graph in the embedding space and facil-
itate the transfer of knowledge from labeled to unlabeled
graphs, a large number of anchor graphs is required. How-
ever, processing excessive anchor graphs in a single iteration
can become computationally expensive due to limitations
in computation and memory resources. To address this
challenge, we maintain a memory bank as a queue, which
dynamically stores a set of anchor graphs selected from the
most recent iterations of the two branches.

Specifically, take the hypergraph branch as an example,
for an unlabeled graph Gu, we can calculate the relational
similarity distribution between its graph representation su
with the representations {sm}Mm=1 of anchor graphs as:

Pm
u =

exp (cos (su, sm) /τ)∑M
m′=1 exp (cos (su, sm′) /τ)

. (8)

In accordance with You et al. (2020), τ is the temperature
parameter set to 0.5, cos(a, b) denotes the cosine similarity
defined as a·b

∥a∥2∥b∥2
. Analogously, the relational similarity

distribution in the line graph branch can be obtained as:

Qm
u =

exp (cos (tu, tm) /τ)∑M
m′=1 exp (cos (tu, tm′) /τ)

. (9)

In this way, we propose the relational consistency learning
to encourage the consistency between distributions Pu =
[Pu

1 , . . . ,Pu
M ] and Qu = [Qu

1 , . . . ,Qu
M ] by minimizing the

Kullback-Leibler (KL) Divergence as:

Lcon =
1

|GU |
∑
u∈GU

1

2
(DKL (Pu∥Qu) +DKL (Qu∥Pu)) .

(10)

Optimization Framework. To introduce the supervision
signals to guide the model, for each labeled graph Gl, we
concatenate the graph representations sl and tl from the two
branches and feed the fused representation to a classifier
(multi-layer perception) for label prediction ŷ. We then
adopt cross-entropy loss to compute the supervised loss:

Lsup = − 1

|GL|
∑
i∈GL

yi log (ŷi) , (11)

where yi denote the ground-truth label for labeled graph
Gi. Finally, we integrate the supervised loss Lsup with
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Algorithm 1 Optimization Framework of the HEAL
Input: Labeled graphs GL, unlabeled graphs GU , the dimen-
sion of hidden embeddings d, the number of hyperedges k,
the number of anchor graphs M , the hyper-parameter β
Output: Trained classifier

1: Initialize the parameters of the GNN-based encoder,
hypergraph structure Learning, and classifier.

2: Select M anchor graphs from labeled set GL to con-
struct the memory bank.

3: while not convergence do
4: Sample a minibatch BL and BU .
5: Forward propagation BL and BU via twin branches.
6: Compute consistency loss Lcon by Eq. (10).
7: Compute supervised loss Lsup by Eq. (11).
8: Update the parameters by gradient descent to mini-

mize L by Eq. (12).
9: Update the memory bank of the two branches follow-

ing the first-in-first-out principle.
10: end while

relational consistency loss Lcon in our combined loss:

L = Lsup + β · Lcon, (12)

where β is a balance hyper-parameter. Our training algo-
rithm is detailed in Algorithm 1.

3.4. Computational Complexity Analysis

With |V | as the average number of nodes in input graphs, d
is the hidden dimensions, and k is the hyperedge number, the
total time complexity of obtaining hyperedge structure and
performing hyperedge convolution is O(kd(|V |+ k)). And
the time complexity of line graph convolution is O(kd(k +
d)). Moreover, the time complexity of computing relational
consistency loss for a graph is O(Md), where M is the
number of anchor graphs. Therefore, the total computational
complexity of HEAL is O(Md+ kd(|V |+ k + d)).

4. Experiment
4.1. Experimental Setups

Datasets. We assess our HEAL on six publicly avail-
able datasets, comprising two bioinformatics datasets PRO-
TEINS (Neumann et al., 2016) and DD (Dobson & Doig,
2003); three datasets derived from social networks, specif-
ically IMDB-B, IMDB-M, and REDDIT-M-5k (Yanardag
& Vishwanathan, 2015); and one dataset from scientific col-
laborations, COLLAB (Yanardag & Vishwanathan, 2015).
We employ the same data split with DualGraph (Luo et al.,
2022), where the labeled training set, unlabeled training set,
validation set, and test set are proportioned in a 2:5:1:2 ratio.
Unless explicitly stated, we use 50% of the labeled data
(corresponding to 10% of all samples) for training.

Baseline Methods. We conduct thorough comparisons with
diverse methods categorized into three groups: traditional
graph algorithms, conventional semi-supervised learning
methods, and graph-specific semi-supervised learning ap-
proaches. Traditional graph methods include WL (Sher-
vashidze et al., 2011), Graph2Vec (Narayanan et al., 2017),
and Sub2Vec (Adhikari et al., 2018). Conventional semi-
supervised learning approaches include EntMin (Grandvalet
& Bengio, 2004), Mean-Teacher (Tarvainen & Valpola,
2017) and VAT (Miyato et al., 2018)). The category of
graph-specific semi-supervised learning methods encom-
passes InfoGraph (Sun et al., 2020), GraphCL (You et al.,
2020), ASGN (Hao et al., 2020), JOAO (You et al., 2021)),
DualGraph (Luo et al., 2022), KGNN (Ju et al., 2022), and
TGNN (Ju et al., 2023b).

Implementation Details. For the implementation of HEAL,
we employ the GIN (Xu et al., 2019) to configure the GNN-
based encoder. We empirically set the embedding dimension
to 32, the batch size to 64, and the training epochs to 300.
For our hypergraph structure learning module, we empiri-
cally set the number of hyperedge k to 32. Moreover, we set
the weight balance hyper-parameter β for Lcon to 0.01. The
model HEAL is optimized using the Adam optimizer with
an initial learning rate of 0.01, and the weight decay is set
to 0.0005. Results are reported as the average classification
accuracy (in %) and the standard deviation over five runs.

4.2. Results and Analysis

The quantitative outcomes of semi-supervised graph classi-
fication are presented in Table 1, and the following obser-
vations can be made from the results. (i) Traditional graph
methods generally underperform compared to other meth-
ods, highlighting the superior capability of graph neural net-
works in harnessing valuable semantic information through
advanced representation learning from graph-structured data.
(ii) Graph-specific semi-supervised learning methods show
enhanced performance over conventional semi-supervised
learning techniques, demonstrating the suitability of recent
graph semi-supervised learning for challenging graph clas-
sification tasks. Notably, KGNN and TGNN achieve nearly
the best performance on most datasets, outperforming pre-
vious state-of-the-art approaches. The success of these ap-
proaches can be attributed to their proficient use of unla-
beled samples, which boosts consistency across different
modules in processing unlabeled graphs. (iii) Our proposed
HEAL outperforms other baseline methods across the major-
ity of benchmarks, demonstrating the robustness of our ap-
proach. The enhancement in performance can be attributed
to the utilization of hypergraph and line graph convolution
branches, which enable the capture of higher-order relation-
ships among nodes. Additionally, the relational consistency
learning module facilitates knowledge transfer between the
two branches, leading to enhanced mutual guidance and
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Table 1: Overview of performance (in %) across six benchmark graph classification datasets, with standard deviations
calculated over five runs. The highest scores are marked in bold, and the second-highest scores are underlined.

Methods PROTEINS DD IMDB-B IMDB-M REDDIT-M-5k COLLAB

WL 63.5± 1.6 57.3± 1.2 58.1± 2.3 33.3± 1.4 37.0± 0.9 62.9± 0.7
Sub2Vec 52.7± 4.5 46.4± 3.2 44.9± 3.5 31.8± 2.7 35.1± 1.5 60.8± 1.4
Graph2Vec 63.1± 1.8 53.7± 1.6 61.2± 2.6 38.1± 2.2 38.1± 1.4 63.6± 0.9

EntMin 62.7± 2.7 59.8± 1.3 67.1± 3.7 37.4± 1.2 38.7± 2.8 63.8± 1.6
Mean-Teacher 64.3± 2.1 60.6± 1.8 66.4± 2.7 38.8± 3.6 39.2± 2.1 63.6± 1.4
VAT 64.1± 1.2 59.9± 2.6 67.2± 2.9 39.6± 1.4 38.9± 3.2 64.1± 1.1

InfoGraph 68.2± 0.7 67.5± 1.4 71.8± 2.3 42.3± 1.8 41.5± 1.7 65.7± 0.4
ASGN 67.7± 1.2 68.5± 0.6 70.6± 1.4 41.2± 1.4 42.2± 0.8 65.3± 0.8
GraphCL 69.4± 0.8 68.7± 1.2 71.2± 2.5 43.7± 1.3 42.3± 0.9 66.4± 0.6
JOAO 68.7± 0.9 67.9± 1.3 71.0± 1.9 42.6± 1.5 42.1± 1.2 65.8± 0.4
DualGraph 70.1± 1.2 69.8± 0.8 72.1± 0.7 44.8 ± 0.4 42.9± 1.4 67.2± 0.6
KGNN 70.9± 0.5 70.5± 0.6 72.5± 1.6 43.3 ± 0.7 44.8± 0.6 67.4± 0.5
TGNN 71.0± 0.7 70.8± 0.9 72.8± 1.7 42.9 ± 0.8 43.8± 1.0 67.7± 0.4

HEAL 73.4 ± 0.8 72.1 ± 0.9 73.5 ± 1.5 44.3 ± 0.6 45.9 ± 1.0 68.3 ± 0.5
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Figure 2: Results of HEAL and baselines with different
labeling ratios on PROTEINS and REDDIT-M-5k datasets.

improved performance. As for IMDB-M dataset, this dis-
crepancy in performance can be attributed to the relatively
smaller size of nodes (13.00) and edges (65.94) in the IMDB-
M dataset compared to the others. In such cases, the use of
hypergraph convolution may not be as effective, since the
construction of a hypergraph might be unnecessary when
dealing with a small-scale graph.

Influence of Labeling Ratio. We evaluate our model
HEAL and baselines on the PROTEINS and REDDIT-M-5k
datasets by varying the labeling ratio of the training data, as
shown in Figure 2. The findings illustrate that as the number
of labeled instances rises, the performance of both HEAL
and the baselines enhances, suggesting that adding more
labeled data effectively boosts performance. Notably, our
proposed HEAL demonstrates the best performance among
all methods in most scenarios, underscoring the advantages
of effectively incorporating graph semantics across different
levels of higher-order structure.

Table 2: Ablation study of HEAL with several variants.

Methods PROTEINS REDDIT-M-5K COLLAB

Hyper-Sup 69.1± 1.0 41.2± 1.2 64.4± 0.7
Line-Sup 66.7± 1.2 40.7± 1.4 64.2± 0.9
Dual-Sup 70.1± 0.9 42.4± 1.2 65.3± 0.8
Hyper-Ensemble 71.8± 1.1 43.6± 1.3 66.7± 0.7
Line-Ensemble 71.5± 1.1 43.9± 1.4 66.0± 0.8

HEAL 73.4 ± 0.8 45.9 ± 1.0 68.3 ± 0.5

4.3. Ablation Study

We carry out ablation studies to evaluate the impact of each
component within our model. We test several model variants
as outlined below: (i) Hyper-Sup trains a single hypergraph
convolution network using only supervised signals. (ii)
Line-Sup trains a single line graph convolution network in
a supervised manner. (iii) Dual-Sup trains a dual branch
of the hypergraph and line graph convolution network in a
supervised manner. (iv) Hyper-Ensemble replaces the line
graph convolution branch with another hypergraph learning
module, using a different initialization. (v) Line-Ensemble
replaces hypergraph convolution branch with another line
graph convolution module, also with different initialization.

The outcomes for various variants are displayed in Ta-
ble 2. Firstly, it is evident that Hyper-Sup generally out-
performs Line-Sup. Moreover, the combination of both
hypergraph and line graph convolution (Dual-Sup) leads to
improved performance, validating the joint effectiveness of
both branches. Secondly, Hyper-Ensemble (Line-Ensemble)
outperforms Hyper-Sup (Line-Sup), indicating that our re-
lational consistency learning module effectively leverages
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Figure 3: Hyper-parameter sensitivity study of HEAL on
PROTEINS and COLLAB datasets.

unlabeled samples and improve the model via ensemble
techniques. Lastly, our full model outperforms both en-
semble versions, underscoring its enhanced effectiveness in
extracting similarities by simultaneously considering both
hypergraph and line graph perspectives.

4.4. Hyper-parameter Study

We analyze how the performance of HEAL changes with
different hyper-parameter configurations. In particular, we
assess the influence of the number of embedding dimen-
sions d and the number of hyperedges k used within the
hypergraph structure learning module.

Influence of Hyperedge Numbers. We first conducted the
influence of the number of hyperedges, varying k in {16, 32,
64, 128, 256} while keeping all other hyperparameters fixed.
The results are shown in Figure 3(a), which reveal that the
accuracy initially increases as the hyperedge number rises
from 16 to 32. However, after reaching a peak, the accuracy
starts to decrease with further increases in the number of
hyperedges. This trend can be attributed to the potential
capture of noise or aggregation of redundant information
from hyperedges as the number of hyperedges grows.

Influence of Embedding Dimensions. We further evalu-
ated the impact of embedding dimensions by varying d in
{16, 32, 64, 128, 256} while maintaining all other hyper-
parameters constant. The results depicted in Figure 3(b)
indicate that performance reaches the peak when the embed-
ding dimensions approach 32. This trend suggests that while
increasing d initially enhances the model’s representation
ability, it may result in overfitting if d continues to rise.

4.5. Analysis of Consistency Loss

The proposed relational consistency loss Lcon aims to en-
hance each instance representation by exchanging instance
knowledge from two correlated views. To highlight the
advantages of the consistency learning module, we carry
out experiments that compare Lcon against other commonly
employed contrastive losses (i.e. InfoNCE loss and mean
squared error (MSE) loss) and consistency learning ap-
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Figure 4: Performance comparison with different labeling
ratios w.r.t. different types of Lcon.

proaches (i.e., FixMatch loss). The results are presented in
Figure 4, from which we can draw the following conclu-
sions. Firstly, we observe a significant performance decline
in HEAL when Lcon is omitted (w/o Lcon), compared to its
inclusion with various forms of contrastive loss. This obser-
vation highlights the importance of inter-branch knowledge
communication in enhancing semi-supervised classification.
Secondly, contrastive losses (Consistency, InfoNCE, MSE)
generally surpass the pseudo-labeling consistency loss (Fix-
Match), which may be due to the biased pseudo-labels de-
termined by unreliable prediction probabilities. Finally, our
proposed consistency loss achieves better results than both
InfoNCE and MSE. These methods typically concentrate on
strictly enforcing similarities between two graph representa-
tions. Our findings suggest that a more flexible alignment of
similarity distributions between hypergraph and line graph
views enhances the effectiveness of consistency learning.

4.6. Visualization Analysis

We conducted a case study on the PROTEINS dataset to vi-
sualize the learned hypergraph structure and corresponding
line graph, thus demonstrating the effectiveness of the hy-
pergraph structure learning module and line graph module,
respectively. Here the thresholds for visualizing the learned
hypergraph structure and corresponding line graph are both
set to 0. In the PROTEINS dataset, each node represents
secondary structure elements (helices, sheets, and turns),
and the edges represent sequential or structural connections
between nodes. Figure 5(a) reveals that elements in the
protein are only connected to their nearest spatial neighbors,
making it difficult to model higher-order interactions. How-
ever, in Figure 5(b), we showcase part of the hyperedges
learned by our hypergraph structure learning module. The
hypergraph structure allows elements in the protein to inter-
act in a high-order manner, facilitating the capturing of more
complex and intricate relationships within protein structures.
The results demonstrate that our hypergraph structure learn-
ing module exhibits remarkable adaptability in acquiring
higher-order node relationships beyond pairwise connec-
tions, enabling enhanced flexibility in modeling complex
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Figure 5: Visualization of the original graph, hypergraph
structure and line graph learned by HEAL (only demonstrat-
ing the most significant hyperedges for simplicity).

data structures. Analogously, figure 5(c) also depicts the
effectiveness of the learned line graph, potentially involving
interactions among hypergraphs, whose interactions often
reveal underlying meaningful semantic patterns.

5. Related Work
Graph Neural Networks (GNNs) have risen as a powerful
tool for handling graph-structured data, facilitating effec-
tive node and graph-level representation learning (Ju et al.,
2024b). The essence of GNNs lies in their iterative process
of enhancing node representations by aggregating informa-
tion from neighboring nodes, allowing nodes to propagate
and exchange information throughout the graph (Gilmer
et al., 2017). This message passing enables GNNs to cap-
ture local neighborhood information and learn expressive
node representations, which are beneficial for a wide range
of tasks such as node classification (Yuan et al., 2023; Luo
et al., 2023a), node clustering (Yi et al., 2023a), link pre-
diction (Zhang & Chen, 2018; Qin et al., 2024), and graph
classification (Ju et al., 2022; Luo et al., 2023b). Compared
with existing methods for supervised graph classification,
our work goes further and studies a promising yet challeng-
ing semi-supervised graph classification.

Hypergraph Learning have gained increasing attention for
their ability to model complex relationships beyond pair-
wise interactions in traditional graphs. The underlying idea

behind hypergraphs is to extend the concept of edges in
graphs to hyperedges, which can connect multiple nodes si-
multaneously. This flexibility allows hypergraphs to capture
higher-order dependencies and interactions among nodes.
Various techniques have been proposed to leverage hyper-
graphs for diverse applications, including clustering (Takai
et al., 2020), classification (Sun et al., 2021), link predic-
tion (Yadati et al., 2020), traffic flow prediction (Zhao et al.,
2023), knowledge graphs (Fatemi et al., 2019), and recom-
mender systems (Xia et al., 2021). Recently, hypergraph
convolutional networks have been proposed as a generaliza-
tion of GCNs to handle hypergraph-structured data, enabling
effective feature aggregation and representation learning in
hypergraphs (Feng et al., 2019; Jiang et al., 2019; Zhang
et al., 2022; Cai et al., 2022). Our HEAL also inherits the
advantages of hypergraphs in modeling higher-order node
relationships and additionally introduces a line graph to
capture the semantic interactions between hyperedges.

Semi-supervised Learning has been proven to be a promi-
nent approach to address the limitations of traditional su-
pervised learning, especially when labeled data is scarce or
expensive to obtain. Early works in semi-supervised learn-
ing focus on spreading label knowledge from labeled data to
neighboring unlabeled data points, effectively expanding the
labeled set and providing more informative data points for
training (Subramanya & Talukdar, 2022; Wan et al., 2021).
Another class involves consistency regularization (Laine &
Aila, 2017; Tarvainen & Valpola, 2017; Lucas et al., 2022),
which encourages the model to maintain stability in its pre-
dictions for perturbed versions of the same input, whether
labeled or unlabeled. Compared with existing methods, our
approach leverages the idea of hypergraphs for both labeled
or unlabeled graphs to explore the inherent structure and
relationships within the data.

6. Conclusion
In this work, we present a hypergraph-enhanced dual frame-
work HEAL for semi-supervised graph classification, and
our HEAL effectively captures graph semantics from the
perspectives of hypergraph and line graph. It incorporates
hypergraph structure learning to explore higher-order node
dependencies and introduces a line graph to capture hy-
peredge interactions. Then, relational consistency learning
is developed to facilitate knowledge transfer between the
two branches. Experiments reveal superior performance
compared to baseline methods in real-world graph datasets.
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Impact Statement
The proposed HEAL framework advances semi-supervised
graph classification by incorporating hypergraph and line
graph perspectives, addressing the limitations of traditional
pairwise node relationships. By learning higher-order node
dependencies through hypergraph structure learning and
capturing hyperedge interactions via a line graph, HEAL
enhances the extraction of underlying semantic structures.
This dual approach facilitates improved knowledge transfer
and mutual guidance between the two graph representations,
contributing to more accurate and insightful graph classi-
fication. This work holds potential for broad applications
in domains requiring effective and efficient graph analy-
sis, such as social network analysis, biological networks,
knowledge graphs, and recommender systems.
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