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ABSTRACT
Drawing samples from a target distribution is essential for statistical computations when the analytical
solution is infeasible. Many existing sampling methods may be easy to fall into the local mode or strongly
depend on the proposal distribution when the target distribution is complicated. In this article, the Global
Likelihood Sampler (GLS) is proposed to tackle these problems and the GL bootstrap is used to assess the
Monte Carlo error. GLS takes the advantage of the randomly shifted low-discrepancy point set to sufficiently
explore the structure of the target distribution. It is efficient for multimodal and high-dimensional distribu-
tions and easy to implement. It is shown that the empirical cumulative distribution function of the samples
uniformly converges to the target distribution under some conditions. The convergence for the approximate
sampling distribution of the sample mean based on the GL bootstrap is also obtained. Moreover, numerical
experiments and a real application are conducted to show the effectiveness, robustness, and speediness
of GLS compared with some common methods. It illustrates that GLS can be a competitive alternative to
existing sampling methods. Supplementary materials for this article are available online.
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1. Introduction

Sampling from a target distribution is an important issue in
statistics. For example, in Bayesian inference, the analytical solu-
tion of the posterior expectation is usually unavailable. Instead,
the Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods
are two popular ways to approximate the integral. In the former
case, random sampling is often used, while in the latter, low-
discrepancy point sets can be used (Lemieux 2009).

To make the MC strategy work efficiently, many sampling
methods have been studied, such as the Sampling/Importance
Resampling (SIR) and the improved SIR (Skare, Bølviken, and
Holden 2003). However, the success of SIR or improved SIR
depends on a good proposal distribution that mimics the target
distribution. Llorente et al. (2021) proposed a two-stage impor-
tance sampling method with an adaptive proposal, but it may
also be difficult to mimic the target well in multimodal and
high-dimensional cases. Markov chain Monte Carlo (MCMC,
Robert and Casella 2013) is another well-established approach
for sampling. When the target is strongly multimodal, some of
the MCMC methods may be trapped in a local mode indefinitely,
such as the Metropolis-Hastings (MH) algorithm. To overcome
this problem, several strategies were proposed, such as the
multiple-try Metropolis-type method (Calderhead 2014; Bern-
ton et al. 2015; Martino 2018), local optimization (Tjelmeland
and Hegstad 2001), and the tempering-based method (Liang
and Wong 2001; Miasojedow, Moulines, and Vihola 2013). Liu,
Liang, and Wong (2000) combined local optimization with the
multiple-try method. The local optimization method may con-
sume much computing resource and a particular optimization
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procedure may not work well for all targets. For the tempering-
based method, the design of the temperature ladder is a tricky
issue and it tends to mix exponentially slowly in dimension if
the modes have different covariance structures (Pompe, Holmes,
and Łatuszyński 2020).

Compared with MC methods, QMC methods typically use
the number-theoretic technique to generate the low-discrepancy
points (e.g., Vandevoestyne and Cools 2010; Wang et al. 2015).
It has been successfully used in many MC problems to speed up
the error convergence rate. The randomized QMC can further
improve the rate in some settings, such as randomly-shifted lat-
tice rules. Vandevoestyne and Cools (2010) showed that quasi-
random SIR has better convergence than SIR and Ning and Tao
(2020) proposed the randomized quasi-random SIR (RQSIR)
with higher accuracy than SIR and quasi-random SIR. In addi-
tion, QMC methods have also been used in MCMC. Owen
and Tribble (2005) proposed a quasi-random version of MH
(QMH) and proved the consistency for QMH and Schwedes and
Calderhead (2018) considered a general parallel quasi-random
MCMC framework. Nevertheless, these methods still have the
problem that they are easy to fall into the local mode or fail in
high-dimensional cases.

To draw samples from multimodal distributions more effi-
ciently, we develop the Global Likelihood Sampler (GLS), which
leverages the low-discrepancy points to obtain more represen-
tative samples. Given a target distribution, GLS uses a Good
Lattice Point (GLP, Fang et al. 2018) set as the candidate samples,
which provides a good representation for the support and does
not need to choose a suitable proposal distribution. Thus, it

© 2023 American Statistical Association and Institute of Mathematical Statistics
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is problem-independent and more robust than MC and QMC
methods which need the proposals. Another novelty is that GLS
uses multiple random shifts on the GLP to enhance its space-
filling property. Compared with SIR, MCMC, and some (ran-
domized) QMC methods, GLS samples from multiple weighted
randomly-shifted GLPs to generate multiple batches of samples,
which increases the diversity of the samples and enables a more
thorough exploration of the target distribution from a global
perspective. Hence, it is essential for GLS to avoid falling into
a local mode and work better than other randomized QMC
methods. Both GLS and the multiple-try methods can produce
multiple batches of samples. The main difference is that the
samples in different batches are independent under GLS, while
they are dependent under the multiple-try methods. Compared
with the local optimization methods, there is no optimization
procedure in GLS. There are fewer parameters to be set in GLS
compared with the tempering-based approaches and the com-
putational complexity of GLS can also be lower since it is without
an iterative process. Moreover, we consider a multi-thread boot-
strap method, named GL bootstrap, to estimate the MC error.
Further, we thoroughly show the theoretical verifications of GLS
and GL bootstrap and illustrate the effectiveness, robustness,
and speediness of GLS for multimodal and multidimensional
target distributions by comparisons in numerical studies and an
application.

The outline of this article is as follows. Section 2 gives
a detailed introduction of GLS. Some asymptotic results are
derived in Section 3. Section 4 presents the GL bootstrap and
derives the convergence for the approximate sampling distribu-
tion of the sample mean. Simulation results for various distri-
butions are conducted to compare GLS with some commonly
used methods in Section 5. A real application of Bayesian object
detection is shown in Section 6 to further illustrate the validity
of GLS. Section 7 gives some conclusions and discussions. All
the proofs and additional results are given in the Appendix,
supplementary materials.

2. Global Likelihood Sampler

In this section, we briefly introduce the GLP and the random
shift technique in randomized QMC. Then, we show the GLS
algorithm and discuss some details of GLS.

The discrepancy is a type of metric in QMC for measuring
how close the QMC points to the true uniform distribution, such
as the star discrepancy and wrap-around L2-discrepancy (WD),
see Fang et al. (2018). An M-run point set is of low discrepancy if
some discrepancy between the Empirical Cumulative Distribu-
tion Function (ECDF) of the points and the uniform distribution
converges to 0 faster than the typical rate for independent ran-
dom points, that is O(M−1/2). The low-discrepancy points can
scatter more uniformly than the uniform random points. One
of the commonly used low-discrepancy point sets is the GLP. A
GLP with M runs and d columns has star discrepancy O(κ(M)),
where κ(M) = 1/M if d = 1 and (log(M))d/M, otherwise.
The general method for constructing a GLP is shown in the
Appendix A.1. The random shift technique (L’Ecuyer 2016) is
very common and useful in randomized QMC. It generates a
single point uniformly on [0, 1]d and adds it to each point of a

given design on [0, 1]d mod 1, coordinate-wise. The Appendix
A.1 proves that if we apply a random shift mod 1 to a GLP
on [0, 1]d, the low-discrepancy property is preserved. Hence, a
(randomly-shifted) GLP in any region also should have a good
space-filling property for that region.

By using the space-filling property, GLS randomly shifts the
GLP multiple times to explore the distribution structure. In
each shift, GLS defines the weights at the randomly-shifted GLP
based on the scaled likelihoods. Compared with the case where
GLP is replaced by the uniform random proposals, GLS can
produce more representative weighted points for the target dis-
tribution. Then, GLS performs sampling from the multinomial
distribution associated with the weighted shifted-GLP. Based on
multiple random shifts, there are multiple multinomial sam-
plings to generate multiple batches of samples, which increase
the diversity and randomness of the sampling. Let �(θ) be a d-
dimensional cdf and π(θ) = C0 · p(θ) be the pdf with support
S , where C0 is the normalizing constant. Denote by m the batch
size and n the number of batches. The detailed steps for GLS are
described in Algorithm 1.

By Algorithm 1, after running GLS, n batches of m-size
random samples will be generated. To attain the computational
complexity of GLS, we denote by O(ζ ) the complexity of cal-
culating the likelihood p at a design point. For M points in
a GLP and n times of shifts on the GLP, the total complexity
for calculating the likelihoods is O(ζMn). The complexity of n
times of random shifts on M d-dimensional points is O(Mnd).
Moreover, with nm samples, the total average-case complexity

Algorithm 1 The procedure of GLS
Input: The target d-dimensional pdf π(θ) with support S , an

M-point GLP Y0
M on [0, 1]d, a predefined threshold εT, the

sample size N.
1: Truncation. Choose at < bt , t = 1, . . . , d and letD = [a, b]

with a = (a1, . . . , ad)
�, b = (b1, . . . , bd)

�, such that
D ⊆ S is a compact subregion containing most of the prob-
abilities of interest, that is,

∫
S\D π(θ) dθ < εT. Transform

Y0
M onto D and denote as YM = {yk = (yk,1, . . . , yk,d), k =

1, . . . , M}. Set n, m such that N = nm and let i = 1.
2: Random shift. Generate a random shift vector ui =

(ui,1, . . . , ui,d)
� ∈ DS = [0, b − a], where ui,t ∼ U(0, bt −

at), t = 1, . . . , d. Shift YM by yk ⊕ ui, where the tth entry of
yk ⊕ ui is

(yk⊕ui)t =
{

yk,t + ui,t if at ≤ yk,t + ui,t ≤ bt
yk,t + ui,t + at − bt , otherwise.

YM ⊕ui = {yk ⊕ui : k = 1, . . . , M} is the randomly-shifted
GLP in the ith batch.

3: Likelihood. Compute qi,k = p(yk ⊕ ui)/
∑M

j=1 p(yj ⊕ ui)

and let F̃M,i be the multinomial distribution over {yk ⊕ ui :
k = 1, . . . , M} with weight qi,k for k = 1, . . . , M.

4: Batch sampling. Sample from F̃M,i m times to obtain the
ith batch of samples Bi = {xi,1, . . . , xi,m}. If i < n, then set
i = i + 1 and go to Step 2.

Output: Drawn sample set X = {xi,j ∈ D : i = 1, . . . , n, j =
1, . . . , m}.
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of multinomial samplings is O(Mnm/2). Thus, the overall com-
plexity of GLS is O((ζ + d + m/2)Mn) in the average case.

For any xi,j ∈ X, i = 1, . . . , n, j = 1, . . . , m and θ ∈ D, we
have

P(xi,j ∈ (−∞, θ ]) = E(F̃M,i(θ |ui))

= 1
v(DS)

∫
DS

M∑
k=1

qi,kI[a,θ](yk ⊕ ui) dui,

where v(DS) is the volume of DS and I[a,θ] is the indicator
function on [a, θ ]. It shows that any element in X follows the
same distribution, denoted by FM(θ). Moreover, since the shift
vectors ui, i = 1, . . . , n in different batches are independent and
all the points in the GLP are shifted by the same vector in one
batch, we can obtain the following proposition.

Proposition 1. Any GLS sample follows the distribution FM(θ)

and the drawn samples in different batches are independent
whereas the samples in the same batch are dependent.

By Proposition 1, for fixed N, the setting n = N and m =
1 brings iid samples. When m > 1, the generated samples
in the same batch are dependent. However, for complicated
distribution, the complexity of GLS is mainly controlled by the
term O(ζMn). Thus, larger m and smaller n can bring lower
computational complexity because of fewer evaluations on the
likelihoods. In practical implementation, if N is moderate, we
can set n = N and m = 1 to obtain good performance;
otherwise, a larger m is required to tradeoff the performance
against the complexity, if iid samples are not the case. Section 5
shows that a larger m would sharply reduce the running time
and this scheme does not degrade the performance of GLS much
compared with the case m = 1. As for M, its setting is associated
with the parameters that characterize the target distribution.
Let ρ be the parameter to approximately characterize the area
proportion of the support of � compared with D. Since D is
pre-determined to contain most of the support, the value of ρ is
usually smaller than 1. For some thin or narrow distributions, ρ
can be small, for example, ρ < 10%, especially when the dimen-
sion is high. When ρ is smaller, M should be larger to catch the
structure of the target distribution. According to the empirical
results in Section 5, if ρ can be roughly pre-determined, M =
5/ρ is a relatively suitable choice to obtain good performance
for GLS.

In addition, because of the truncation, the generated sample
set X is associated with the conditional distribution �(θ |D)

essentially, while, it can be derived that for any θ ∈ S ,

|�(θ) − �(θ |D)| =
∣∣∣∣
∫

(S\D)∩(−∞,θ]
π(x) dx +

∫
D π(x) dx − 1∫

D π(x) dx∫
D∩(−∞,θ]

π(x) dx
∣∣∣∣ ,

in which (
∫
D π(x) dx − 1)/(

∫
D π(x) dx) < 0,∫

(S\D)∩(−∞,θ] π(x) dx and
∫
D∩(−∞,θ] π(x) dx are

nondecreasing with respect to each component of θ . Moreover,
the compact region D is limited to satisfy

∫
S\D π(x) dx < εT

in Step 1 of GLS. Thus, we have
sup
θ∈S

|�(θ) − �(θ |D)| < εT, (1)

which implies that the difference can be controlled by the thresh-
old εT. Based on the fact, we further develop the convergence
results for GLS in the next section.

3. Theoretical Results

Let F(θ) = �(θ |D) and f (θ) = π(θ |D), where π(θ |D) =
π(θ)/

∫
D π(x) dx, if θ ∈ D; π(θ |D) = 0, otherwise. Denote

εI = supθ∈D,u∈DS VHK(f ·I[a,θ])D∗(YM⊕u)v(D), where VHK(f ·
I[a,θ]) is the total variation of f · I[a,θ] on D in the sense of Hardy
and Krause (Hlawka 1961), D∗(YM⊕u) is the star discrepancy of
YM ⊕u, and v(D) is the volume ofD. To establish the asymptotic
results for GLS, we need the following assumptions.

Assumption 1. f (x)I[a,θ](x) is of uniformly bounded variation in
the sense of Hardy and Krause for any θ ∈ D.

Assumption 2. M is sufficiently large such that εI ∈ (0, 1/2).

Assumption 3. m is fixed.

Assumption 4. κ(M)
√

m = O(1),

Assumption 5. There exists a constant β ′ > 0, such that
κ(M)

√
m/(log(m))β

′ = O(1).

Assumption 1 is required to guarantee the bounded error
in Koksma-Hlawka inequality, which serves to achieve uniform
asymptotic results. Assumptions 2–5 impose some assumptions
on M and m to achieve the convergence in probability or with
probability 1. When Assumption 1 holds, VHK(f · I[a,θ]) is
bounded. D∗(YM ⊕ u) = O(κ(M)) for any u ∈ DS and κ(M)

is decreasing with respect to M. The value of v(D) is bounded.
Hence, Assumption 2 can be satisfied when M is enlarged to
some degree. When N is given, m(≤ N) can be set based on
the user’s requirement for the performance and the complexity
of GLS. Assumptions 4–5 can also be satisfied when M is larger
than m to a certain extent.

Based on these assumptions, we derive the convergence of
GLS. First, we can obtain how the cdf of the samples FM(θ)

converges to the conditional target cdf F(θ) on D.

Lemma 1. (1) If Assumption 1 holds, then we have

sup
θ∈D

|FM(θ) − F(θ)| = O(κ(M));

(2) if Assumptions 1, 2 holds, then for any z ∼ F(θ) and
closed hypercube B ⊆ D, where B is small enough such that
P(Card((YM ⊕ ui) ∩ B) ≤ 1) = 1, we further have∣∣P(xi,j ∈ B) − P(z ∈ B)

∣∣ ≤ 2εIP(z ∈ B),

where Card(·) is the cardinality of a set.

Lemma 1(1) shows that FM(θ) converges to F(θ) on D uni-
formly as M → ∞. The convergence rate κ(M) is faster than
the rate O(M−1/2) for the uniform random proposals. From
Lemma 1(2), the relative error between the distributions (or
densities) of xi,j and z can be as small as possible when M is
large enough. It also implies that, (i) for any integrable function,
the integrals under the two distributions can be arbitrarily close,
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and (ii) for any nonnegative integrable function, the relative
error between the integrals can be arbitrarily small when M is
sufficiently large.

In addition, as previously discussed in Section 2, if m > 1,
the samples in each batch are dependent. For any 1 ≤ k ≤ m, let
F(k)(θ) and FM,(k)(θ) be the joint cdfs of k independent random
vectors that follow F(θ) and the GLS samples x1,1, . . . , x1,k,
respectively. In the following, we discuss how the correlation and
dependence perform among the samples.

Lemma 2. If Assumption 1 holds, then we have

(1) for any 1 ≤ i ≤ n and 1 ≤ k < l ≤ m,
supθ∈D |cov(I[a,θ](xi,k), I[a,θ](xi,l))| = O(κ2(M));

(2) for any 1 ≤ k ≤ m, supθ∈D |F(k)(θ) − FM,(k)(θ)| =
O(κ(M)).

By Lemma 2, both the correlation and dependence among
the GLS samples diminish with the increase of M. In practical
application, even though enlarging m brings some correlation
among the samples in the same batch, it can be weak if M is large.

Let FM,n,m(θ) be the ECDF of the GLS samples. Based on
Lemma 1(2), we show how FM,n,m(θ) converges to FM(θ) uni-
formly in the following.

Lemma 3. (1) If Assumptions 1, 2, 3 or Assumptions 1, 2, 4 hold,
then

sup
θ∈D

|FM,n,m(θ) − FM(θ)| = OP

(
1√
nm

)
;

(2) for any β > 0, if Assumptions 1, 2, 3 or Assumptions 1, 2, 5
with β ′ < β hold, then

sup
θ∈D

|FM,n,m(θ) − FM(θ)| = o
(

1
γn,m

)
,

where γn,m = √
nm/(log(nm))1/2+β .

From Lemma 3, we obtain the uniform convergence rates
of FM,n,m(θ) to FM(θ), in probability and with probability 1,
respectively. The latter is a stronger result, while the rate is lower.
Based on Lemma 1(1) and Lemma 3, we can further obtain
the uniform convergence between FM,n,m(θ) and the conditional
target distribution F(θ) on D as follows.

Theorem 1. (1) If Assumptions 1, 2, 3 or Assumptions 1, 2, 4
hold, then

sup
θ∈D

|FM,n,m(θ) − F(θ)| = OP

(
max

{
κ(M),

1√
nm

})
;

(2) for some β > 0, if Assumptions 1, 2, 3 or Assumptions 1, 2,
5 with β ′ < β hold, then

sup
θ∈D

|FM,n,m(θ) − F(θ)| = O
(

max
{
κ(M),

1
γn,m

})
.

Next, we discuss how to improve the convergence rate of
GLS. Vandevoestyne and Cools (2010) proved that under some
conditions, using low-discrepancy points Dm = {(2k − 1)/2m :
k = 1, . . . , m} to do multinomial resampling in quasi-random
SIR can accelerate the convergence compared with SIR. In GLS,

let 
(i) : [0, 1] → YM ⊕ ui be the mapping to represent
the multinomial sampling from the shifted GLP with weights
qi,j, j = 1, . . . , M, in the ith batch, that is, Bi = {
(i)(u(i,j)

m ) :

j = 1, . . . , m}, where u(i,1)
m , . . . , u(i,m)

m
iid∼ U(0, 1), 1 ≤ i ≤ n,



(i)
θ := I[a,θ]◦
(i), i = 1, . . . , n, and ◦ represents the composition

of two functions. To obtain the improved result, we need another
assumption.

Assumption 6. For any 1 ≤ i ≤ n, 

(i)
θ (u) is of uniformly

bounded variation in the sense of Hardy and Krause for any
θ ∈ D, run size of GLP M, and shift vector ui.

Inspiringly, we can demonstrate that if the randomized QMC
points are used in the multinomial samplings of GLS, the con-
vergence rate can be higher.

Theorem 2. If Assumptions 1, 2, 6 hold, and for i = 1, . . . , n,
the randomized QMC point set Dm ⊕ u(i)

m , u(i)
m ∼ U(0, 1), are

used in Step 4 of GLS for multinomial sampling, that is, Bi =
{
(i)(d(i)

m ) : d(i)
m ∈ Dm ⊕ u(i)

m }, then

sup
θ∈D

|FM,n,m(θ) − F(θ)| = OP

(
max

{
κ(M),

1
m

√
n

})
.

By Theorem 2, if the conditions can be satisfied, the conver-
gence rate can be improved from 1/

√
nm to 1/(m

√
n) for the

convergence of GLS in probability.
Finally, we convert the convergence result of GLS on D to

that on the support S . From the previous discussion and (1), it
is known that for any εT > 0, we can truncate a tail and obtain
a hypercube D such that supθ∈S |�(θ) − F(θ)| < εT. Thus,
based on Theorem 1, we can also show that FM,n,m(θ) uniformly
converges to �(θ) on S .

Theorem 3. For any εT > 0, we can cut out a closed and
bounded hypercube D and perform the GLS algorithm on D.
If Assumptions 1, 2, 3 or Assumptions 1, 2, 5 with β ′ < β holds
for some β > 0, then

sup
θ∈S

|FM,n,m(θ) − �(θ)| < εT,

when M and nm are sufficiently large.

Theorem 3 shows that the ECDF of the GLS samples can
approximate the target cdf �(θ) arbitrarily, which verifies the
validity of the GLS algorithm.

4. GL Bootstrap

Generally, the bootstrap can approximate the sampling distri-
bution of a “statistic” based on resampling to construct the
hypothesis testing. We introduce the multi-thread GL bootstrap
in Algorithm 2, which is mainly used to estimate the MC error
for the n-size GLS samples. Compared with bootstrapping from
the single-thread sampler with m = 1 in GLS, GL bootstrap
increases m in GLS and in each Tb, b = 1, . . . , B, it only
draws one sample from each batch of the GLS samples, which
decreases the possibility of repeated samples and increases the
diversity of the bootstrap samples. Hence, GL bootstrap allows a
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Algorithm 2 The procedure of GL bootstrap
1: Let ξ = ξ(�) be the interested vector parameter of �(θ)

and ξ̂ = ξ(FM,n,1).
2: Take one xi,wi (1 ≤ wi ≤ m) randomly from each batch

Bi = {xi,1, . . . , xi,m}, i = 1, . . . , n, and pool them into a
pseudo-sample set Tb = {xi,wi : i = 1, . . . , n}. Let Ĝ(Tb) be
the ECDF of Tb. Define ξ̂b = ξ(Ĝ(Tb)) as the estimate of ξ

based on Tb.
3: Repeat Step 2 B times to generate B sets Tb and B estimates

ξ̂b, b = 1, . . . , B, whose ECDF is an approximation for the
sampling distribution of ξ̂ .

4: The estimates of ξ and the MC error are, respectively,

¯̂
ξ = 1

B

B∑
b=1

ξ̂b and MCE = 1
B

B∑
b=1

(ξ̂b − ¯̂
ξ)(ξ̂b − ¯̂

ξ)�.

better chance to efficiently reduce the bias for the estimation of
some statistic than bootstrapping from the single-thread sam-
pler multiple times. Wang et al. (2015) also illustrated this point
of view empirically. With the multi-thread strategy, the sampling
distribution of a statistic can also be approximated. Given the
GLS sample set X = {xi,j ∈ D : i = 1, . . . , n, j = 1, . . . , m},
we explore the sampling distribution of the sample mean X =
1
n

∑n
i=1 xi,1 under GL bootstrap. Let {x∗

i : i = 1, . . . , n} be
a GL bootstrap pseudo-sample and X∗ = 1

n
∑n

i=1 x∗
i be a

GL bootstrap estimate of the sample mean, where the pseudo-
sample is generated following Step 2 of Algorithm 2. Denote by μ

the mean and by � the covariance of the target cdf �(θ). Then,
we obtain the asymptotic result for the approximate sampling
distribution of the sample mean in the following theorem.

Theorem 4. Let Gn(τ ) = P(
√

n(X − μ) ≤ τ ) and G∗
n(τ ) =

P(
√

n(X∗ − X) ≤ τ |X). if the conditions in Theorem 3 hold, as
M → ∞, m → ∞ and n → ∞, we have

sup
τ∈Rd

|Gn(τ ) − G∗
n(τ )| → 0.

Conditional on X, let Ĝ∗
B(τ ) = 1

B
∑B

b=1 I(−∞,τ ](
√

n(X∗
b −

X)). By Glivenko-Cantelli theorem, the simulation error
between Ĝ∗

B(τ ) and G∗
n(τ ) can be made arbitrarily small uni-

formly for τ by increasing the number of replications B. Hence,
Theorem 4 indicates that GL bootstrap works for the sample
mean. The validities of GL bootstrap under other statistics can
be demonstrated similarly with suitable modifications.

5. Numerical Simulations

In this section, we compare GLS with some popular methods,
that is, SIR, MH, EMC, RQSIR, and QMH, through numerical
experiments under various settings. In Section 5.1, by sampling
from multivariate mixed normal distributions with different
numbers of dimensions and modes, we demonstrate the effec-
tiveness and superiority of GLS. In Section 5.2, we compare
these methods under some other distributions, whose proposal
distributions are not easy to determine. Comparisons are also

conducted under shifted distributions, where the locations or
shapes of the modes are shifted deterministically or randomly.
Based on these results, the robustness of GLS is illustrated. In
the simulations, the sizes of the GLPs in GLS, RQSIR, and the
number of the proposals in SIR are set the same, denoted by M.

5.1. The Effectiveness of GLS

In this section, the target distribution is set to be a d-dimensional
multimodal distribution, which consists of a mixture of nm
normal distributions,

�(θ) = 1
nm

nm∑
i=1

�(θ |μi, �i), (2)

where �(θ |μ0, �0) is the cdf of the multivariate normal dis-
tribution with mean μ0 and covariance matrix �0, nm is the
number of modes, �1 = · · · = �nm = (ρ/nm)2/d/64 · Id, and ρ

is an approximated area proportion for the support of � relative
to D = [0, 1]d. The mean vectors μ1, . . . , μnm are decided by a
nearly uniform design with size nm such that most of the area
with nonzero density falls into [0, 1]d.

For GLS, we denote it by GLS1 if m = 1, GLSm otherwise.
Two cases are discussed, that is, (i) GLS1 with n = N, m = 1;
(ii) GLSm with n = m = √

N. For the multimodal target
distribution, it may be difficult to determine an appropriate
proposal distribution. Hence, the proposal distributions for SIR,
MH, and EMC are set as the random uniform distribution,
which may be a robust choice. Other settings for the consid-
ered methods are shown in the Appendix B.1. Given the target
cdf � with pdf π and the ECDF �N of the drawn samples
{xi = (xi,1, . . . , xi,d) : i = 1, . . . , N} ⊆ [0, 1]d, instead of
supθ∈[0,1]d |�(θ) − �N(θ)|, we adopt a generalization of WD
in QMC to compare the samples under different methods for
saving time. The generalized WD (GWD) is similar to WD,
except that the uniform distribution is replaced by �. The
smaller the GWD, the closer the ECDF of the samples is to the
target. Specifically, GWD has the form

GWD =
[∫

[0,1]2d

d∏
=1

k(t, z)π(t)π(z) dt dz

− 2
N

N∑
i=1

∫
[0,1]d

d∏
=1

k(t, xi,)π(t) dt

+ 1
N2

N∑
i=1

N∑
j=1

d∏
=1

k(xi,, xj,)

⎤
⎦

1/2

≈
⎡
⎣ 1

Nqmc1

Nqmc1∑
q1=1

d∏
=1

k(tq1,, zq1,)π(tq1)π(zq1)

− 2
NNqmc2

N∑
i=1

Nqmc2∑
q2=1

d∏
=1

k(eq2,, xi,)π(eq2)

+ 1
N2

N∑
i=1

N∑
j=1

d∏
=1

k(xi,, xj,)

⎤
⎦

1/2

,
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Figure 1. The comparison of GWD with ρ = 2%. Under each method, the line and the corresponding bandwidth of the shaded band denote the average and double
standard deviation of GWDs for 100 repetitions, respectively.

where K is the WD kernel K(t, z) = ∏d
=1 k(t, z) with

k(t, z) = 3/2 − |t − z| + |t − z|2, {t1, . . . , tqmc1}, {z1, . . . , zqmc1}
and {e1, . . . , eqmc2} are quasi-random numbers on [0, 1]d.

For � in (2), we consider d = 4, 16, 64, nm = 3, 9, 27,
and ρ = 0.5%, 1%, 2%. For each case, the sample size
N = 100, 225, 400, 900, 1600, 3600, 6400. In general, when ρ

is smaller, M should be larger for better exploration. We set
M = 5/ρ. Samplings and computations are carried out on a
server Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz. Under
each setting, we replicate each method (i.e., QMH, RQSIR, EMC,
MH, SIR, GLS1 and GLSm) 100 times. The average CPU time
for running each method once is recorded. Based on the 100
samples, we compute the means and the standard deviations of
GWDs, L∞-norms of the bias of sample mean (BSM), and L∞-
norms of the bias of sample covariance matrix (BSC). Here we
show the results for GWD and running time with ρ = 2% for
saving space. Other results can be found in the Appendix B.

In Figure 1, we show the comparison of GWDs under differ-
ent methods. SIR and RQSIR have relatively bad performance
with large GWDs whatever d and nm are. When d is small, for
example, d = 4, QMH performs better than MH with smaller
averages for GWDs and both of them are better than EMC.
If d is larger and nm is small, for example, d = 12, 20 and

nm = 3, QMH and MH show similar performance and EMC
can perform better than them. However, the advantage of EMC
diminishes with the increase of nm. As for GLSm and GLS1, they
are always more stable and show better performance than other
methods, especially when d is higher and nm is larger. GLS1
performs better than GLSm because of the independence of the
samples and more exploration (i.e., larger n) for the distribution
structure. The comparisons for cases ρ = 0.5%, 1% show similar
conclusions in the Appendix B.1. In general, when ρ is smaller,
and d and nm are larger, GLS1 and GLSm can maintain relatively
good performance, while other methods show worse perfor-
mance. Moreover, we display the L∞-norms of BSM and BSC
in the Appendix B.2 and B.3, respectively. The result for BSM
gives similar conclusions to those based on GWD, and in terms
of BSC, the superiority of GLS is also demonstrated. Hence,
these results illustrate that GLS has an advantage in exploring
the structure of the multimodal distribution.

In addition, we also compare the average CPU time in Fig-
ure 2 and Appendix B.4. When M is small, that is, ρ is large
(e.g., ρ ≥ 2%), the computational complexity of GLS1 is lower
than that of EMC; when M increases (e.g., ρ ≤ 1% and N is
large), the complexity of GLS1 could be higher than that of EMC.
Nevertheless, it is worth noting that the running time of GLSm is
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Figure 2. The comparison of the average CPU time with ρ = 2%.

always short, which is close to those of SIR and RQSIR. It implies
that the computational complexity can be decreased sharply for
GLS by increasing the batch size m, when the total sample size is
fixed. Hence, considering both computational complexity and
performance, GLS1 is a good choice with better performance
and acceptable running time when the sample size is small, while
GLSm maybe better with less running time and comparable
effect when the sample size is large.

Finally, based on the samples from GLSm and GLS1, we
study the convergence of GL bootstrap in terms of the standard
deviations of the L∞-norm of BSM and GWD. Specifically, for
ξ being the L∞-norm of BSM or GWD, denote by MCE(ξ)

and SD(ξ) the estimated standard deviation by GL bootstrap
and the standard deviation by repeated samplings, respectively.
For each N in each case, we perform GL bootstrap B = 100
times based on one 10N-size sample from GLSm with n =
N and m = 10. We calculate MCE(ξ) based on the 100 N-
size GL bootstrap pseudo-samples and compare them with the
corresponding SD(ξ) obtained from 100 repeated samplings by
GLS1 with n = N and m = 1. Then, we compute Diff(ξ) =√

N(SD(ξ) − MCE(ξ)), which are shown in Figure 3. For the
L∞-norm of BSM, in many cases, there is almost no obvious
increasing or decreasing tendency; for GWD, there is also no
obvious trend with the increase of N. Hence, we can nearly claim
that both Diffs of L∞-norm of BSM and GWD can be bounded

when N(= nm) is large. That is, both convergence rates of the
estimated standard deviations of L∞-norm of BSM and GWD by
GL bootstrap are approximately O(1/

√
n) with fixed M and m.

5.2. The Robustness of GLS

In this section, we discuss some other distributions to study the
robustness of GLS. Following Ning and Tao (2020), we first apply
SIR, RQSIR, MH, and GLS to a bivariate posterior distribution
and a unimodal Kotz-type distribution to approximate the (pos-
terior) expectation. We also consider two cases for GLS, that is,
(i) GLS1 with m = 1 and n = N, (ii) GLSm with m = 10
and n = N/m. Other settings for the considered methods are in
the Appendix B.5. For these methods, similar to Ning and Tao
(2020), we set (i) M = 1000, N = 100, (ii) M = 3000, N = 200.
We replicate each method 1000 times and compare the MSEs of
the mean estimations under different methods, that is,

MSE = 1
1000

1000∑
k=1

[
Êk(X) − Êk(X)

]2
,

where Êk(X) = ∑N
i=1 x(k)

i /N, Êk(X) = ∑1000
k=1 Êk(X)/1000 and

{x(k)
i : i = 1, . . . , N} is the sample set for the kth replication.

When the true expectation is known, Êk(X) is replaced by the
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Figure 3. The comparisons of Diff for L∞-norm of the bias of sample mean (BSM) and GWD with ρ = 0.5%, 1%, 2%.

Table 1. The MSEs of the mean estimations for the Kotz-type distribution with
M = 1000, N = 100.

Method μ1 μ2 μ3 μ4 μ5 μ6 sum

SIR 0.5974 0.7902 1.9724 5.7121 21.6671 113.7552 144.4946
RQSIR 0.5833 0.6357 1.7315 5.1814 15.3513 70.2728 93.7560
MH 0.3336 0.4719 1.2200 3.6727 13.4874 65.0283 84.2140
GLS1 0.1851 0.2327 0.2650 0.2635 0.2438 0.2528 1.4430
GLSm 0.1879 0.2360 0.2655 0.2633 0.2447 0.2526 1.4500

NOTE: sum is the summation of the MSE for each component.

true value. The sampling details for the bivariate posterior dis-
tribution are given in the Appendix B.5. In this case, SIR, RQSIR,
and MH have suitable proposals. GLS shows comparable per-
formance to approximate the posterior expectation compared to
the methods with good proposal distributions.

For the Kotz-type distribution, the corresponding pdf has the
form

π(θ) = Ca|�a|1/2
[
(θ − μa)

��−1
a (θ − μa)

]J−1

exp
{
−r

[
(θ − μa)

��−1
a (θ − μa)

]s}
,

where r > 0, s > 0, J > (2 − d)/2, Ca is the normalizing
constant, μa is the mean vector, and �a is the dispersion matrix.
We set r = 1, s = 2, J = 2 and consider a six-dimensional Kotz-
type distribution with μa being the 6 × 1 vector of zeros and �a
being the six-dimensional Pascal matrix, which is shown in the
Appendix B.5.

Following Ning and Tao (2020), the proposal distributions
in SIR, RQSIR, and MH are set as the multivariate normal
distribution �(θ |μa, �p) with �p = diag(1, 2, 6, 20, 70, 252),
the diagonal elements of �a. In this setting, the proposal distri-
bution goes far away from the target, since the target distribution
is quite skewed. When the coordinate index is larger, the degree
of the skewness is greater. Table 1 shows the MSEs for the mean
estimation under different methods with M = 1000, N =

100. Except for GLS1 and GLSm, other methods bring large
MSEs, especially when the coordinate index is large. Another
case presents a similar phenomenon in the Appendix B.5. It
implies that for SIR, RQSIR, and MH, when the chosen proposal
distribution is not suitable or it is difficult to find a suitable
proposal distribution, the performance would be pretty bad,
while GLS can well avoid such situations and shows certain
robustness to the target distribution.

In addition, we also perform some shifts on the target dis-
tributions in (2) with d = 12, nm = 9, and ρ = 1%, 3%.
The details are shown in the Appendix B.6. From the result, it
can be concluded that GLS is robust to the shape shifting of the
modes and has good performance. When the distribution has
relatively dispersed modes, GLS can perform well and stably;
even though the modes are centralized, GLSm can also bring
good performance with limited computing resources.

6. Application—Bayesian Object Detection

In this section, we consider a real application, detecting the
discrete objects hidden in some background noise, to further
illustrate the validity of GLS. A Bayesian approach for this
problem in an astrophysical context was first presented by Hob-
son and McLachlan (2003). Similar task is also discussed in
other literature on the multimodal distributions, such as Pompe,
Holmes, and Łatuszyński (2020) that focused on the inference
about the locations of sensors.

Following Hobson and McLachlan (2003), we wish to detect
and characterize some Gaussian-shaped discrete objects in a
single image, each of which is described by

τ(x; c) = A exp
{
−1/2 · [x − X, y − Y]R−1[x − X, y − Y]�

}
,

(3)
where c = {X, Y , A, R}, x = (x, y), (X, Y) is the location of
the object, A is its amplitude, and R ∈ R

2×2 is some measure
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Figure 4. (1): The 201×201-pixel test image; (2): the corresponding data map with
independent Gaussian pixel noise added to (1).

of its spatial extent. Denote the vector D as the pixel values
in the image. If there exist Nobj objects defined by (3) and the
contribution of each object to the data is additive, we have D =
n + s(c̃), where c̃ = {c1, . . . , cNobj}, s(c̃) = ∑Nobj

i=1 s(ci), s(ci)
denotes the contribution to the data from the ith discrete objects,
and n denotes the noise. For simplicity, Nobj is fixed and known.
We wish to use the data D to detect the objects. Figure 4(1) shows
the 201 × 201-pixel test image containing Nobj = 8 objects.
The details for data generation are shown in the Appendix B.7.
In Figure 4(2), we plot the data map by adding independent
Gaussian pixel noise with a variance of 1.5. With this level of
noise, only a few objects are visible.

A desirable approach is to detect all the objects in the image
simultaneously by sampling from the posterior distribution of
the full set of parameters c̃. Specifically, since the noise n follows
�(n|μb, �b) with μb = 0Npix and �b = 1.5·INpix , the likelihood
function is

L(c̃) = exp
{−1/2 · [D − s(c̃)]��−1

b [D − s(c̃)]}
(2π)Npix/2|�b|1/2 , (4)

where Npix = 2012 is the length of D. Let πp(c̃) denote the joint
prior distribution of c̃. Then the (unnormalized) posterior dis-
tribution is P(c̃|D) = L(c̃)πp(c̃). If we focus on all the location
parameters, the parameter space is {X1, Y1, . . . , X8, Y8}, which
corresponds to a 16-dimensional sampling problem. In addition,
by Hobson and McLachlan (2003), an alternative approach is
simply to set Nobj = 1. We directly sample from the corre-
sponding posterior and try to detect the objects. Even if all
the parameters are taken into account, the parameter space is
still reduced, that is, {X, Y , A, R}, which is a six-dimensional
problem. If we only focus on the location parameters and fix
A, R, the space can be further reduced to {X, Y}, which is only
two-dimensional. Fixing Nobj = 1 does not restrict us to
detecting just a single object. Indeed, the posterior distribution
would possess numerous local maxima, each corresponding to
the location of one of the objects. Hobson and McLachlan (2003)
showed that this method is reliable when the objects of interest
are separated spatially.

Here we consider the 2-, 6-, and 16-dimensional cases dis-
cussed above and let the sample size N = 2500. We use
GLS1 (n = N, m = 1), GLSm (n = m = √

N), SIR,
MH, and EMC to sample from the posterior distribution and
compare the performance of these methods for detecting the

objects. The prior distributions and the settings for the consid-
ered sampling methods are shown in the Appendix B.7. The
sampling results are shown in Figure 5. To judge the detec-
tion performance, we also plot the contours for the objects in
Figure 5, which form 8 elliptical areas. Clearly, for the three
cases, SIR and MH cannot capture most of the objects and they
are easy to fall into a local mode. For EMC, the performance
for the 16-dimensional case is the best with samples falling
into seven elliptical areas, whereas for the other two cases,
more than half of the objects are not detected. SIR, MH, and
EMC all produce many repeated samples. Under GLS1 and
GLSm, it can be seen from Figure 5 that most of the objects
are captured for the three cases. Moreover, the drawn sam-
ples have more diversity compared with other methods. From
Figure 5(11)–(15), compared with other methods in the 16-
dimensional case, there are more samples out of the elliptical
areas under GLS1 and GLSm after projecting the eight pairs
of the location samples into the (X, Y)-subspace. In fact, the
number of samples in each elliptical area is more than that of
any other area of the same size. Based on the true location
of each object, we also calculate the bias of the sample mean
and standard deviation of the samples in each elliptical area
of Figure 5 and the numbers of samples in each area under
GLS1 and GLSm. The details of these quantitative results are
shown in the Appendix B.7. Since SIR, MH, and EMC draw
more repeated samples that lead to smaller standard deviations,
we mainly focus on the comparison of the biases. Compared
with other methods, many of the biases under GLS1 and GLSm
are smaller. Thus, GLS can detect more objects with higher
accuracy. Moreover, in most cases, the variance of the samples in
each elliptical area under GLS1 is larger than that under GLSm,
while the bias of the sample mean under GLS1 is smaller in
many cases. It implies that GLS1 generates more diverse samples
and brings more accurate detection. In terms of the number
of samples in each elliptical area, GLS1 is more inclined to
produce more samples than GLSm at the modes with relatively
small densities. It illustrates that GLS1 takes a more thorough
exploration of the target distribution. In summary, for object
detection, GLS1 and GLSm perform more effectively than other
considered methods for multimodal distribution. GLS1 takes
more thorough exploration and brings more accurate detection
compared with GLSm, while GLSm requires less computational
cost.

7. Conclusions and Discussions

For GLS, we theoretically prove that the ECDF of the sam-
ples converges to the target distribution. When the randomized
QMC points are used in the multinomial samplings of GLS,
the convergence rate can be improved. We also demonstrate the
convergence of the approximate sampling distribution for the
sample mean under GL bootstrap.

A variety of numerical experiments are conducted under
different distributions to compare GLS with other sampling
methods. The results show that GLS has a good performance and
is stable for multimodal and multidimensional distributions.
In terms of computational complexity, we can increase m and
decrease n to reduce the running time for a fixed N. By the
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Figure 5. The sample plots from the posterior for the considered three cases. The black dots are the samples and the ellipses are the contours corresponding to Figure 4(1).
The upper, middle, and lower panels depict the (projected) samples in the (X , Y)-subspace for the 2-, 6-, and 16-dimensional cases, respectively.

comparisons of sampling performance and running time, if M <

500 and N < 400, GLS1 is recommended with good perfor-
mance and acceptable computational cost; otherwise, GLSm is
a better choice with less cost and relatively good result. The set
of m in GLSm shall be a compromise between performance and
complexity. By the simulations, m = √

N is a good choice.
Moreover, when the proposal distribution is well set for the
methods that need proposals, GLS gives comparable perfor-
mance; when the proposal distribution cannot be given suitably,
GLS outperforms those methods. The distribution shifts also do
not affect the superior performance of GLS. It illustrates that
the GLS is robust against the distribution structure. The appli-
cation in Bayesian object detection further verifies the validity
of GLS with multiple detected objects. In addition, GLS also
performs well under other unimodal distributions, which are
not presented for saving space. Hence, without the intention to
replace MCMC or other advanced sampling methods, GLS can
be a promising and competitive alternative with effectiveness,
robustness, and speediness.

Additionally, GLS uses random shifts on GLP to enhance the
ability for exploring the target distribution structure. To improve
the performance of GLS, the deterministic shifts for the GLP
can be studied for a better space-filling property. Moreover, the
current version of GLS is probably not suitable when the target
is extremely heavy-tail or the concern is extreme events. It is
of particular importance to improve GLS for accommodating
heavy-tail distributions. It is beyond the scope of the article but
worthy of further investigation.

Supplementary Materials

Code: The supplemental file includes all the programs to reproduce the
results in the article. (GLS_CODE_ALL.zip)

Appendix: The supplemental file includes the Appendix which gives all the
proofs and additional results. (GLS-appendix.pdf)
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