
Statistics and Computing (2023) 33:9
https://doi.org/10.1007/s11222-022-10185-0

ORIG INALPAPER

Model-free global likelihood subsampling for massive data

Si-Yu Yi1 · Yong-Dao Zhou1

Received: 27 August 2022 / Accepted: 20 November 2022 / Published online: 1 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Most existing studies for subsamplingheavily dependona specifiedmodel. If the assumedmodel is not correct, the performance
of the subsample may be poor. This paper focuses on amodel-free subsampling method, called global likelihood subsampling,
such that the subsample is robust to different model choices. It leverages the idea of the global likelihood sampler, which is an
effective and robust samplingmethod from a given continuous distribution. Furthermore, we accelerate the algorithm for large-
scale datasets and extend it to deal with high-dimensional data with relatively low computational complexity. Simulations
and real data studies are conducted to apply the proposed method to regression and classification problems. It illustrates
that this method is robust against different modeling methods and has promising performance compared with some existing
model-free subsampling methods for data compression.

Keywords Data compression · Global likelihood sampler · Good lattice points · Space-filling design

1 Introduction

With the development of technology, massive data is more
and more ubiquitous in many science fields. The storage
memory and computing resource may be two challenging
problems in conducting statistical analysis for massive data.
Faced with those challenges, the subsampling techniques
are studied broadly to extract useful information and atten-
dantly reduce the burden of memory and computation (e.g.,
Mahoney 2011;Ma et al. 2014;Wang et al. 2018;Meng et al.
2021).

To improve the estimation efficiency, nonuniform sub-
sampling methods are often used so that the data points
with more information can be selected with higher probabil-
ities. However, most existing studies focus on model-based
subsampling methods which significantly depend on model
assumptions. Ting and Brochu (2018) investigated optimal
subsampling with influence functions. Wang et al. (2019)
proposed the information-based optimal subdata selection
(IBOSS) for linear models which selects the subsample
deterministically. Wang and Ma (2021) studied optimal sub-

B Yong-Dao Zhou
ydzhou@nankai.edu.cn

Si-Yu Yi
siyuyi@mail.nankai.edu.cn

1 School of Statistics and Data Science, Nankai University,
Tianjin 300071, China

sampling procedure that minimizes the asymptotic variance
of the subsampling estimator for quantile regression. Yu et al.
(2022) derived the MV and MVc methods which use the
optimal Poisson subsampling probabilities in the context of
quasi-likelihood estimation under the A- and L-optimality
criteria. Wang et al. (2021) proposed an orthogonal subsam-
pling approach for big data with a focus on linear regression
models.When themodel is correct, suchmethods can give an
excellent compression of big data; otherwise, poor subsam-
pling performance may result. In practical problems, a more
common situation is that the underlying model is unknown
before analyzing the data. Hence, with limited computational
resource, a robust subsampling method against model mis-
specification may be a desirable choice.

A model-free subsampling method expects that the sub-
sample has a statistical similarity to the full dataset. Joseph
andVakayil (2022) proposed anoptimal data splittingmethod
called SPlit for model validation. It splits the full dataset
into training and testing sets such that the full dataset and
the testing set follow the same distribution. Then, SPlit is
also a model-free subsampling method. While, the compu-
tational cost of SPlit is fairly high especially when the data
size is large or the dimension is high. To decrease the com-
plexity, Vakayil and Joseph (2022) further studied a much
quicker algorithm, called Twinning, to make it applicable to
big data problems such as data compression. Vakayil and
Joseph (2022) also theoretically showed that the objectives

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-022-10185-0&domain=pdf

9 Page 2 of 16 Statistics and Computing (2023) 33 :9

of Twinning and SPlit are equivalent. Nevertheless, the per-
formance of both SPlit and Twinning may become bad for
data compression when the dimension is high. The com-
plexity of Twinning would also be relatively high when the
data size is large enough. In addition, Zhang et al. (2022)
proposed a data-driven subsampling (DDS) method, which
utilizes the rotation-inversion transformation based on a uni-
form design and takes the nearest neighbor substitution to
obtain the subsample. Uniform design is a type of space-
filling design under a given uniformity criterion, such as star
discrepancy or mixture discrepancy. It aims to use a discrete
point set to approximate the uniform distribution as closely
as possible, see Fang et al. (2018) for details. DDS can gen-
erate subsample quickly and is a deterministic subsampling
method, which requires the full data to have jointly indepen-
dent coordinates.

The global likelihood sampler (GLS,Wang et al. 2015; Yi
et al. 2022) is an effective and robust sampling method from
a given distribution and easy to operate. It uses randomly-
shifted good lattice points (GLP, Fang et al. 2018), a type
of low-discrepancy point set, to generate several batches of
the samples based upon the scaled densities on the design
points. Multiple shifts of the GLP make the exploration of
the target distribution more sufficient and hence GLS can
well avoid falling into a local mode with cheap computation.
Inspired byGLS,wepropose amodel-free subsampling strat-
egy, called global likelihood subsampling (GLSS), such that
the subsample can statistically mimic the full data as well
as possible. GLSS is a deterministic subsampling method.
Unlike GLS, we usually don’t know the exact distribution
of the data, and we need to estimate the data distribution
first and then perform subsampling. In GLSS, a better per-
formance can be obtained without multiple random shifts.
The setting for the parameter in GLSS is more restrictive.
Like GLS, a low-discrepancy point set can be used as the
representative points in GLSS and we sample from these
representative points with weights based on the estimated
data distribution. Then the sequential nearest neighbor sub-
stitution is also applied to select a subset of the original full
data. Moreover, GLSS relaxes the limitation on the indepen-
dence of each dimension of the data inDDS. Furthermore,we
propose some variants of GLSS to accelerate the algorithm
for large-scale datasets and deal with the high-dimensional
data with low computational complexity. In terms of the pre-
diction performance under different models, compared with
the uniform random sampling (URS), a common baseline
for developing model-free methods, GLSS has a significant
performance improvement. The computational complexity
of GLSS is much lower than SPlit and GLSS has com-
parable performance with SPlit in many low-dimensional
cases. With a well-set parameter, GLSS outperforms Twin-
ning in low-dimensional cases. In some high-dimensional
cases, GLSS can perform better than both SPlit and Twin-

ning. It can also perform much better than DDS in many
cases. Moreover, comparing GLSS with some model-based
subsampling methods such as IBOSS, MV, and MVc, GLSS
shows a better effect and robustness when the evaluation cri-
terion is inconsistent with the criterion which derives the
subsampling rule. Further, GLSS may have potential appli-
cations in other domains, such as the scalable Markov chain
Monte Carlo (Maire et al. 2019), in which subsampling is
essential to reduce the computational budget.

This paper is organized as follows. Section2 describes
the GLS algorithm and proposes the GLSS algorithm. Some
details for GLSS and the variants of GLSS are discussed.
The convergence result of GLSS is derived in Sect. 3. To
compare themodel-robust property of URS, SPlit, Twinning,
DDS, IBOSS, MV, MVc, and GLSS for data compression
under different models, Sects. 4 and 5 show some simulation
examples and real data studies for regression and classifica-
tion. Finally, some conclusions and discussions are given in
Sect. 6. All the proofs of the lemmas and theorems are given
in the Appendix.

2 Methodology

In this section, we briefly introduce the GLS algorithm and
propose the GLSS algorithm for subsampling. A simple
acceleration strategy and a dimension reduction technique
are embedded into GLSS for large-scale datasets and high-
dimensional data with low complexity, respectively.

2.1 Global likelihood sampler

Let F(θ) be a d-dimensional cumulative distribution func-
tion (CDF) and f (θ)be the correspondingprobability density
function (PDF). Following Yi et al. (2022), GLS first trun-
cates a closed and bounded hypercube D0 with most of the
probabilities of interest contained and an M-point GLP is
randomly shifted ñ times in the truncated hypercube. In
the i th shift for i = 1, . . . , ñ, GLS defines the weights at
the randomly-shifted GLP {g(i)

k ∈ D0 : k = 1, . . . , M}
based on the scaled likelihoods f (g(i)

k)/
∑M

j=1 f (g(i)
j) for

k = 1, . . . , M and then it performs multinomial sampling
associated with the weighted shifted-GLP to generate an m̃-
size sample. Based on ñ randomly shifts on the GLP, there
are ñ multinomial samplings to generate ñ batches of m̃-size
samples. After running GLS, an ñm̃-size GLS sample will
be produced.

In GLS, by using the GLP, there is no need for the pro-
posal distribution and thus it avoids the problems caused
by poor proposal distribution. It makes that GLS can be
problem-independent for different target distributions. Com-
pared with the case where GLP is replaced by the uniformly

123

Statistics and Computing (2023) 33 :9 Page 3 of 16 9

distributed random proposals, GLS can produce more rep-
resentative weighted points for the target distribution since
the (randomly-shifted) GLP has better space-filling property.
Multiple random shifts and multinomial samplings increase
the diversity and randomness of the sampling. Hence, GLS
can be effective to explore the structure of complicated tar-
get distribution. Yi et al. (2022) also theoretically proved that
the empirical cumulative distribution function (ECDF) of the
GLS sample uniformly converges to the target distribution in
probability and with probability 1 under some conditions.
When the one-dimensional random numbers on [0, 1] in
the multinomial sampling of each batch are replaced by the
randomized low-discrepancy point set {((2 j − 1)/(2m̃) +
u) mod 1 : u ∼ U (0, 1), j = 1, . . . , m̃}, the rate for con-
vergence in probability can be improved. By simulations and
applications in Yi et al. (2022), the effectiveness, robustness,
and speediness of GLS are demonstrated by comparisons
with some other commonly used sampling methods, e.g.,
sampling/importance resampling (Rubin 1987), Metropolis-
Hastings algorithm (Hastings 1970) and evolutionary Monte
Carlo (Liang and Wong 2001).

2.2 Global likelihood subsampling

In this paper, under the model-free assumption, our purpose
is to extract an n-size subsample Z̃ from the N -size full
data Z , such that Z̃ can statistically represent Z for data
compression. Suppose that Z contains N independent and
identically distributed (i .i .d.) samples coming from F over
R
d . According to the GLS algorithm, we need to know the

target distribution up to a multiplicative constant for sam-
pling. In the subsampling issue, wemay not achieve the CDF
F directly. Instead, we adopt the kernel density estimation
(KDE,Davis et al. 2011; Parzen 1962) to estimate the density
function for Z . Then, we perform subsampling based on the
estimated density function. For any θ ∈ R

d , with a specific
kernel function, the KDE based on Z is given by

f̂K(θ) = 1

N · rd
N∑

i=1

K

(
θ − zi

r

)

,

K (u) =
{
1/vd ||u|| ≤ 1,

0 otherwise,
(1)

where zi ∈ Z for i = 1, . . . , N , r is the bandwidth, K is
the uniform kernel, and vd is the volume of a unit ball in
R
d . Hence, the estimated density at θ is proportional to the

number of data points in the ball B(θ , r) with θ as the center
and r as the radius.

Based on f̂K, we wish to sample from the representa-
tive points for the data space D (i.e., a bounded hypercube
such that Z ⊆ D), which can fill the space well and spread
as uniformly as possible. Inspired by GLS, we utilize the

space-filling design S = {si : i = 1, . . . , M} in D, e.g., the
low-discrepancy point set GLP, and estimate the densities of
the design points by f̂K, in which r is chosen as half of the
separation distance (i.e., the minimal pairwise distance) of
S. For any 1 ≤ k ≤ M , (sk, f̂K(sk)) can be regarded as
a representation for the data information in B(sk, r). Then,
similar to the improved GLS in Yi et al. (2022), to yield more
representative samples, instead of the uniform random num-
bers, we can use the one-dimensional low-discrepancy point
set {(2 j − 1)/2n : j = 1, . . . , n} to do multinomial sam-
pling on the distribution placing mass f̂K(sk)/

∑M
i=1 f̂K(si)

at sk, k = 1, . . . , M , where n is the subsample size. Themore
data points around the design point, the higher the probability
that the design point would be drawn. Empirically, compared
with GLS, the use of the space-filling design without random
shifts can attain a better performance for subsampling. It can
not only enable Z̃ to capture the main data information in
Z , but also preserve the pattern of S to a certain extent. Fur-
thermore, for the subsampling purpose, the final subsample
should be a subset of the full data. To obtain the final subsam-
ple, for any drawn design point di , i = 1 . . . , n, we use the
sequential nearest neighbor substitution in the small region
B(di , r). Specifically, we first record and count distinct ele-
ments in {d1, . . . , dn} by [{d̄1, . . . , d̄nu}, {c1, . . . , cnu}] =
unique_count({d1, . . . , dn}), where d̄q is the qth dis-
tinct point and cq is the corresponding number of times
that d̄q appears in {d1, . . . , dn} for q = 1, . . . , nu. Then,
for any d̄q , q = 1, . . . , nu, we record the cardinality of
{B(d̄q , r) ∩ Z} by Cq = #{B(d̄q , r) ∩ Z}; we compute
the quotient and remainder of cq/Cq by [quoq , remq] =
division(cq ,Cq); we repeat the data points in B(d̄q , r)∩
Z quoq time(s) by repeat(quoq , {B(d̄q , r) ∩Z}) and find
the remq nearest data points to d̄q in B(d̄q , r) ∩ Z to con-
struct partial subsample based on d̄q . With a moderate value
for M , if the full data is not extremely imbalanced, quoq is
usually not larger than or equal to 1.

It allows the final subsample to be as non-repetitive as pos-
sible. Since the L2-norm between each drawn design point
and the corresponding replacing data point is no more than
r , the final subsample can statistically mimic the distribution
of drawn design points to some extent.

To intuitively show thewhole procedure of GLSS, we give
the pseudo-code inAlgorithm1.GLSS is a deterministic sub-
sampling method. In contrast to GLS, the requirement on the
setting ofM , the run size of the space-filling designS, ismore
restrictive in GLSS. According to the results in Sects. 4 and
5,M mainly depends on the number of dimensions d, the full
data size N and the subsample size n.Wemay approximately
set M = exp(2(d +ν)) with−d < ν ≤ 2. When d is larger,
ν is smaller for controlling the computational complexity.
Under the same d, M becomes larger with the increase of
N or n for capturing the data structure better. In the imple-

123

9 Page 4 of 16 Statistics and Computing (2023) 33 :9

Algorithm 1 The pseudo-code of GLSS
Input: Full data, Z = {zi ∈ D : i = 1, . . . , N }; Space-filling design,

S = {si ∈ D : i = 1, . . . , M}; the separation distance of S, rS ; the
size of the final subsample, n.

Output: Subsample Z̃ = { z̃i ∈ D : i = 1, . . . , n};
1: Initialize: Z̃ = ∅ and r = rS/2;
2: for j = 1 to n do
3: l = (2 j − 1)/(2n);
4: for k = 1 to M do
5: if

∑k−1
i=1 f̂K(si) < l

∑M
i=1 f̂K(si) ≤ ∑k

i=1 f̂K(si) then
6: d j = sk ;
7: break
8: end if
9: end for
10: end for
11: [{d̄1, . . . , d̄nu }, {c1, . . . , cnu }] = unique_count({d1, . . . , dn});
12: for q = 1 to nu do
13: Cq = #{B(d̄q , r) ∩ Z}; [quoq , remq] = division(cq ,Cq);

14: Z̃ = Z̃ ∪ repeat(quoq , {B(d̄q , r) ∩ Z}) ∪
argminv1,...,vremq ∈B(d̄q ,r)∩Z

∑remq
i=1 ||vi − d̄q ||};

15: end for
16: return Z̃;

mentation, if S is chosen as a GLP, we can use the Lattice
function (Nuyens and Cools 2006) in the mined R package
(Wang and Joseph 2022) to fast construct it, in which the
size M should be set as a prime integer. S can be substituted
by other space-filling designs under the discrepancy-based
or distance-based criteria (Fang et al. 2018). Hereafter, we
choose a M-size GLP as S to perform GLSS. On the other
hand, based on KDE and the chosen space-filling design, we
need to calculate the density at each design point quickly
for the subsequent sampling, especially when M is large.
To meet this requirement, the k-d tree (Bentley 1975) is a
proper choice, which is a multi-dimensional binary search
tree as a data structure for the storage of information to be
retrieved by associative searches. This structure is efficient
for several applications, such as range searches and near-
est neighbor searches. Hence, in GLSS, we can use the k-d
tree to calculate rS , f̂K, and the remq nearest data points for
d̄q , q = 1, . . . , nu to accelerate the algorithm. In addition,
the parallel computation technique can be used in each FOR
loop of GLSS to further speed up the algorithm.

Based on the use of the k-d tree, we analyze the com-
putational complexity of GLSS as follows. The complexity
of building a k-d tree from N d-dimensional points is
O(dN log N). We use the fixed-radius near neighbors query
to calculate the estimated density f̂K at theM points inS with
average-case complexity O(

∑M
i=1(log N + kr,i)) and worst-

case complexity O(
∑M

i=1(N
1−1/d + kr,i)), where kr,i is the

number of reported points inB(si , r) for i = 1, . . . , M . Both
the average-case andworst-case complexity of eachmultino-
mial sampling are O(M). We can record and count distinct
elements in O(dn) time on average and O(dn log n) time in
the worst case. Moreover, we need to build the k-d tree in

B(d̄q , r)∩Z, q = 1, . . . , nu for the remq -nearest neighbors
query, and search the neighbors with average-case complex-
ity O(dCq logCq + logCq + remq) and worst-case com-

plexity O(dCq logCq +C1−1/d
q + remq). Note that n < N ,

∑M
i=1 kr,i ≤ N ,

∑nu
q=1 Cq ≤ N and

∑nu
q=1 remq ≤ N . Thus,

the overall time complexity of GLSS in the average case can
be simplified to O(dN log N)+ O(M log N +∑M

i=1 kr,i)+
O(M)+O(dn)+O(

∑nu
q=1(dCq logCq+logCq+remq)) =

O(dN log N + M log N), while the worst-case complexity
of GLSS is O(dN log N) + O(MN 1−1/d + ∑M

i=1 kr,i) +
O(M) + O(dn log n) + O(

∑nu
q=1(dCq logCq + C1−1/d

q +
remq)) = O(dN log N + MN 1−1/d). In the following, we
consider two 2-dimensional toy examples for visualization.

Example 1 Consider two different datasets, as shown in
Fig. 1, i.e., (i) the full data Z is generated from a two-
dimensional standard normal distribution; (ii) each element
(xi , yi) in the full data follows yi = x2i + εi , xi ∼
N (0, 1), εi ∼ N (0, 1) for i = 1, . . . , N . Let the sizes of the
full data and the final subsample be N = 2000 and n = 60,
respectively. Based on the two datasets, we compare URS
with GLSS. In GLSS, the sizes of the used GLPs in the two
cases are 349 and 887, respectively. The data structure in
case (i) is simple and n is small, so a GLP with a small size is
enough forGLSS,while for the datawith amore complicated
structure, e.g., case (ii), GLSS needs a larger size for GLP
to achieve a good performance. From Fig. 1, it can be seen
that for the two datasets, the subsample under GLSS gives a
better representation of the full data compared with URS.

In application, if N is not very large, e.g., N <5e5=
5 × 105, or the corresponding computational complexity is
acceptable, we can directly perform GLSS on Z for good
subsampling performance. Otherwise, to reduce the com-
putational cost, a compromising strategy is to first conduct
URS on Z to obtain an Ns-size (N > Ns > n) intermedi-
ate subsample Zs, and then perform GLSS on Zs to achieve
the final subsample Z̃ , i.e., run Algorithm 1 with Z being
replaced by Zs. We denote this procedure by GLSSa. In
this case, the setting of M in GLSSa shall be closely asso-
ciated with d, Ns, and n. The computational complexity of
GLSSa should be O(dNs log Ns+M log Ns) on average and
O(dNs log Ns + MN 1−1/d

s) in the worst case. The set of Ns

shall be a tradeoff between the subsampling performance and
time complexity. By the empirical results in Sect. 4.1, when
N > 5e5, Ns = N/10 is an appropriate choice for good
performance and reduced running cost.

In addition, we may not know the specific structure of the
full data in applications. To better catch the data informa-
tion, with the increase of d, the size M of S in GLSS would
increase exponentially. The attendant challenge is the high
computational complexity due to large d and M . To han-
dle this problem, dimension reduction techniques should be

123

Statistics and Computing (2023) 33 :9 Page 5 of 16 9

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-5

0

5

10

15

-4 -2 0 2 4
-5

0

5

10

15

(a) URS (b) GLSS

(c) URS (d) GLSS

Fig. 1 The left and right panels are the results under URS and GLSS,
respectively. ‘+’: the original synthetic data; ‘o’: the subsample

taken into account and we propose a high-dimensional ver-
sion of GLSS based on singular value decomposition (SVD)
and denote it as GLSSh.We do not directly implement GLSS
on the high-dimensional full data. Instead, we perform SVD
on the normalized full data for reducing the dimension of the
data and conduct GLSS in the reduced latent space. Then,
we convert the subsample back to the original space. Specif-
ically, GLSSh can be described in the following three steps.

Step 1 Normalize the full data Z to obtain Z̄ and perform
SVD on Z̄ as Z̄N×d = UN×d Sd×dV	

d×d . Denote
by U ′ the first d ′(< d) columns of U ;

Step 2 Implement the GLSS algorithm on the latent space
U ′ and record the indexes of the selected rows with
size n;

Step 3 Select the rows in the full data Z corresponding to
the indexes in Step 2 to obtain the final subsample.

In practical application, we recommend using GLSSh
when d ≥ 5 and choosing the minimal number of the dimen-
sions that can make the contribution accounting for the total
variation of the full data reach 70%, as the d ′. By the empir-
ical results in Sect. 4, the setting of M in Step 2 may be
relative to both d ′ and d for a good performance, that is,
we can set M = exp(2(d ′ + ν)) with −d ′ < ν ≤ 2.
According to the simulation study, it is recommended that
ν = 1.4, 1.2, 0.6, 0.3 for d ′ = 2, 3, 4, 5, respectively. For
larger d ′, we limit 5.3−d ′ < ν < 6−d ′ to balance the perfor-

mance and complexity. With the same d ′, M becomes larger
when d is larger. Performing SVD requires O(d2N) time.
Hence, in this case, the computational complexity of GLSSh
should be O(d2N + d ′N log N + M log N) in the average
case and O(d2N + d ′N log N + MN 1−1/d ′

) in the worst
case. For ultrahigh-dimensional data, the variable selection
techniques, e.g., LASSO (Tibshirani 1996) or Pearson cor-
relation coefficient comparison (Fan and Lv 2008), can also
be incorporated before performing SVD, and then we only
focus on the important variables in SVD, subsampling, and
modeling. In general, the number of the significant variables
would not be large and the requirement for the contribution
rate can be approximately met with relatively small d ′ in real
data. The simulations and real data studies in Sects. 4 and 5
illustrate that with amoderate number of important variables,
d ′ = 2 is a reasonable and suitable choice inmany cases with
good performance and low complexity for data.

Synthetically, when N > 5e5 and d ≥ 5, we can com-
bine GLSSa with GLSSh and denote it as GLSSah, i.e., we
first perform URS on the N -size full data Z to obtain the
Ns-size subsample Zs before Step 1 of GLSSh and replace
the full data in Steps 1 and 3 with the Ns-size subsam-
ple Zs. In this case, the setting of M in GLSSah should
be mainly relative to d ′, Ns and n. The time complex-
ity of GLSSah is O(d2Ns + d ′Ns log Ns + M log Ns) and

O(d2Ns+d ′Ns log Ns+MN 1−1/d ′
s) in the average andworst

cases, respectively.

3 Theoretical results

In this section, we establish the convergence result for GLSS
based on the theoretical results for KDE and GLS. First, for
the estimated density byKDE, based on (1) and Jiang (2017),
we can obtain the following result.

Lemma 1 If f is bounded and Hölder-continuous (i.e.,
| f (θ) − f (θ ′)| ≤ Cα||θ − θ ′||α for θ , θ ′ in R

d and 0 <

α ≤ 1), and the support of f is bounded, then uniformly for
r > (log N/N)1/d , we have

sup
θ∈Rd

|F̂K(θ) − F(θ)| = OP(�) with � = rα +
√
log N

Nrd
,

where F̂K is the corresponding CDF of f̂K.

Lemma 1 is a direct application of Theorem 2 in Jiang
(2017). It theoretically guarantees the effectiveness of the
multivariate KDE. Next, under the multinomial sampling
based on S and the corresponding weights defined by KDE,
we denote by Z̃s the n-point drawn design points. Let FZ̃s

be

the ECDF of Z̃s and � be the mapping for the multinomial
sampling. Denote �θ := I[−∞,θ] ◦ �, where ◦ represents the

123

9 Page 6 of 16 Statistics and Computing (2023) 33 :9

composition of two functions. Based on f̂K(θ) in (1), the
sampling process in GLSS is similar to that in GLS, except
thatS is not randomly shiftedmultiple times inGLSS.Hence,
following Yi et al. (2022), we can obtain the uniform conver-
gence result for FZ̃s

as follows.

Lemma 2 If the following conditions are satisfied,

(1) f̂K(x)I[−∞,θ](x) is of uniformly bounded variation in the
sense of Hardy and Krause for any θ ∈ R

d ,
(2) S is a low-discrepancy point set,
(3) �θ (u) is of uniformly bounded variation in the sense of

Hardy and Krause for any θ ∈ R
d and run size M of S,

then we have

sup
θ∈Rd

|FZ̃s
(θ) − F̂K(θ)| = O

(

max

{

κ(M),
1

n

})

,

where κ(M) = 1/M if d = 1, and (log(M))d/M, otherwise.

The proof of Lemma 2 follows Lemma 1(1) and Theorem
2 in Yi et al. (2022). In essential, the order O(1/n) is consis-
tent with the result of error bound in the quasi Monte Carlo
method by the famous Koksma-Hlawka inequality (Hlawka
1961). By Lemma 2, it theoretically implies that the ECDF of
the drawn design points converges to the estimated CDF for
Z based on KDE. Furthermore, combining Lemma 1 with
Lemma 2, we can obtain the convergence between FZ̃s

and
F as follows.

Theorem 3 If the conditions in Lemmas 1 and 2 are satisfied,
we have

sup
θ∈Rd

|FZ̃s
(θ) − F(θ)| = OP(�),

where � = max{1/Mα/d + (M log N/N)1/2, 1/n}.
Remark 1 Suppose that the conditions in Theorem 3 are
satisfied, (i) if M = O((N/ log N)d/(d+2α)), we have
supθ∈Rd |FZ̃s

(θ) − F(θ)| = OP(max{1/Mα/d , 1/n}); (ii) if
M = O((N/ log N)d/(d+2α)) and n = O(Mα/d), we further
have supθ∈Rd |FZ̃s

(θ) − F(θ)| = OP(1/Mα/d).

FromTheorem3, theECDFof the drawndesign points can
uniformly converge to the trueCDFof the full data. Remark 1
is a direct application ofTheorem3, inwhich the convergence
rate can be simplified when imposing some conditions on M
and n. Then, by the sequential nearest neighbor substitution
as described in Algorithm 1, the final subsample can also be
statistically representative of the true distribution for the full
data and thus of the full data, if the disturbance error can be
ignored.

Finally, for the variant GLSSa, let FZs be the ECDF of the
Ns-size intermediate subsample Zs. We show that the URS
strategy inGLSSa is distribution-preserving in the following.

Lemma 4 If the elements inZ follow F and we performURS
with replacement on Z to obtain the Ns-size Zs, then the
elements inZs also follow F and supθ∈Rd |F(θ)−FZs(θ)| =
OP(1/

√
Ns).

Thus, based on Lemma 4, the conclusions in Lemmas
1 and 2, Theorem 3, and Remark 1 also hold if {Z, N } is
replacedby {Zs, Ns} since the i .i .d. samples inZs also follow
F . It implies that GLSSa should be effective for large N and
not too small Ns.

4 Numerical examples

As mentioned earlier, by GLSS, we want to find a subsample
Z̃ from the full data Z such that Z̃ is a good representation
of Z for reducing the storage memory and decreasing the
computational complexity of modeling. In this section, we
perform GLSS under different settings and compare it with
some othermodel-free ormodel-based subsamplingmethods
to illustrate its validity for data compression.

In Sects. 4.1 and 4.2, we compare the performance and
running time of GLSS, GLSSa, and GLSSh with those of
some other model-free methods, i.e., URS, SPlit, Twin-
ning, and DDS, under different subsample sizes, data sizes,
numbers of dimensions, and models. We also make the com-
parison between GLSSh with some model-based methods,
i.e., IBOSS, MV, and MVc, in Sect. 4.3. Sections4.4 and 4.5
study the effects of the contribution rate by SVD and the
effective number of dimensions in GLSSh.

We use the SPlit R package (Vakayil et al. 2022) to per-
form SPlit in parallel, in which the maximum number of
iterations is 500 and the tolerance level is 1e-6. The twin-
ning R package (Vakayil et al. 2022) is used for conducting
Twinning in parallel. Other settings for SPlit and Twinning
are set as the default values in the R packages. In DDS, we
adopt the n-size GLP as the uniform template. In GLSS, the
value of M is set to a prime integer for ease of constructing
the corresponding GLP by the Lattice function, as discussed
in Sect. 2.2.

All the variables in the sets to be subsampled are normal-
ized to mean 0 and standard deviation 1 before subsampling.
We repeat each subsampling method 50 times. For DDS,
GLSS, GLSSa, and GLSSh, we shift the used GLP by a
small-valued uniformly distributed random vector in each
repetition. Except for Sect. 4.3, all the subsampling pro-
cedures are performed on the Ntr-size training sets (i.e.,
N = Ntr) from different data-generating models. Based
on the obtained subsample under each method, to compare
the model-free property, i.e., the robustness against different

123

Statistics and Computing (2023) 33 :9 Page 7 of 16 9

modeling methods, we consider the linear regression model,
the Gaussian process model (GP, Santner et al. 2003) and
the multivariate adaptive regression splines (MARS, Fried-
man 1991). In each modeling method, the parameter settings
for different subsamples from different subsampling meth-
ods are the same for a fair comparison. To measure the
prediction performance of these fitted models, we compute
the logarithm of the rooted mean squared prediction error
(log RMSPE) based on the testing set, i.e., log RMSPE =
log((

∑Nte
i=1(yi − ŷi)2/Nte)

1/2), where Nte is the size of the
testing set, yi is the i th response in the testing set, and ŷi is the
prediction of yi based on the fitted model for i = 1, . . . , Nte.
The evaluation criterion is also used in Joseph and Vakayil
(2022); Vakayil and Joseph (2022); Zhang et al. (2022).
The time complexity is compared by recording the loga-
rithm of the average CPU time for running each subsampling
method once in parallel (log Time) in Sects. 4.1 and 4.2. In
Sect. 4.3, we perform subsampling on the full data. Follow-
ing Yu et al. (2022), based on the subsamples from GLSSh,
IBOSS, MV, and MVc, we compare the logarithm of the
empiricalMSE (logMSE)of the parameter estimator of inter-
est (e.g., the regression coefficient and the population mean),
i.e., log MSE = log(

∑50
i=1 ||ζ̂ (i) − ζ̂ full||2/50), where ζ̂ (i) is

the parameter estimator from the i th subsample under some
subsampling method, and ζ̂ full is the estimator from the full
data. Computations are carried out on a normal PC with a
6-core 2.4 GHz Intel processor.

4.1 Comparison of GLSS, GLSSa and URS, SPlit,
twinning, DDS

We consider that the data is generated by a univariate second-
order model

y(x) = x2 + ε, x ∼ N (0, 1), ε ∼ N (0, 1), (2)

which corresponds to a 2-dimensional subsampling problem,
as shown in Fig. 1. We first fix Ntr = 1e4, Nte = 5e4 and
let n = 300, 600, 900, 1200. We generate both the training
set and the testing set by the model (2). For comparison,
we conduct URS, SPlit, Twinning, DDS, and GLSS on the
training set. In GLSS, we set M = 881, 1031, 1193, 1301
for each n in turn. Based on the subsamples, the linear,
GP and MARS models are considered, in which the linear
model and the mean function in the GPmodel are fitted using
the second-order term x2. Figure2 shows all the prediction
results under different modeling methods using the n-size
subsamples from different subsampling methods. Due to the
dependence between x and y, DDS shows the worst per-
formance, even if the PCA technique is integrated into the
subsampling. Both SPlit and Twinning perform better than
URS and DDS, whereas Twinning is worse than SPlit in
many cases and due to the random choice of the initial value,

it is less stable than SPlit with larger averages and variances
of log RMSPEs. As for GLSS, it also outperforms URS and
DDSwith smaller log RMSPEs. Comparedwith SPlit, GLSS
shows comparable and promising performance. Compared
with Twinning, GLSS has better worst-case performance

for the three considered regression methods. In addition,
it can be seen from Fig. 2 that whatever n is, the prediction
result can lead to a similar conclusion by comparing the log
RMSPEs among different subsampling methods based on
each modeling method. It indicates that the subsample size
n has little impact on the comparison of these subsampling
methods.

Then, we fix n = 300, Nte = 5e4 and let Ntr =
5e4, 1e5, 5e5, 1e6, 5e6. We perform URS, SPlit, Twinning,
DDS, GLSS, and GLSSa on the training sets with different
sizes. In GLSS, we set M = 1307, 1307, 1307, 1361, 1609
for Ntr = 5e4, 1e5, 5e5, 1e6, 5e6, respectively. In GLSSa,
we set Ns = Ntr/10 and M = 853, 857, 1301, 1301, 1381
for each Ntr in turn. Figure3 shows the prediction result
using each obtained subsample and the average running time
of each subsampling method. It can be seen that the result
for each Ntr gives similar conclusions by comparing the log
RMSPEsof eachfittedmodel basedonURS,SPlit, Twinning,
DDS, and GLSS. The SPlit brings relatively good predic-
tion result, while it occupies the highest computational cost,
especially when Ntr is large. Twinning is less stable and has a
larger log RMSPE than SPlit. GLSS shows promising perfor-
mance with a much lower time cost compared with SPlit and
it also has better performance than Twinning. For GLSSa,
when Ntr > 5e5, the prediction abilities based on GLSSa
under the three modeling methods are comparable in con-
trast with GLSS, whereas with Ntr < 5e5, GLSSa performs
slightly worse, which implies that GLSSa is more effective
when Ntr is larger. In terms of the running time, it can be
seen from Fig. 3f that GLSS would be quicker than Twin-
ning when Ntr > 1e6, while Twinning is faster if Ntr < 1e6.
The running costs of DDS and Twinning are similar when
Ntr < 1e6, whereas Twinning spends a higher cost when Ntr

becomes larger. Moreover, GLSSa can sharply reduce the
running time for large Ntr compared with GLSS.

4.2 Comparison of GLSSh and URS, SPlit, twinning,
DDS

We consider a multivariate data-generating model as

y(x) = (x1 + x2 + · · · + xd−1)
2 + ε,

x1, x2
i .i .d∼ N (0, 1), ε ∼ N (0, 1), (3)

where xi is generated by xi = xi−1+xi−2 for i = 3, . . . , d−
1. In the model (3), only x1 and x2 are independent and the
generated data corresponds to a d-dimensional subsampling

123

9 Page 8 of 16 Statistics and Computing (2023) 33 :9

Fig. 2 The comparison of the
log RMSPEs for different
subsample sizes and models
under URS, SPlit, Twinning,
DDS, and GLSS in Sect. 4.1

(a) (b)

(c) (d)

(a) (b) (c)

(d) (e) (f)

Fig. 3 The comparison of a–e the log RMSPEs for different data sizes and models under URS, SPlit, Twinning, DDS, GLSS, and GLSSa, and f
the average time for running each subsampling method once in Sect. 4.1

problem.We set the number of dimensions d = 3, 10, 17 and
fix Ntr = 5e5, Nte = 5e4, n = 300. URS, SPlit, Twinning,
DDS, and GLSSh are considered for subsampling in these
cases. In GLSSh, we reduce d = 3, 10, 17 to d ′ = 2 by SVD
(named 2-dGLSSh hereafter)with the contributions account-
ing for 66.68%, 90.00%, 94.12% of the total variations in the
training sets, respectively. We set M = 881, 2477, 2731 for
the cases d = 3, 10, 17 in 2-d GLSSh, respectively.

Based on the subsamples from these methods, linear
regression and GP models are considered. Only the second-
order terms with respect to x1 and x2, i.e., x21 , x

2
2 , x1x2, are

incorporated to fit the linear model and the mean function
of the GP model. We also calculate the log RMSPEs of the

fitted models based on the testing set and record the time
cost of each subsampling method, which are shown in Fig. 4.
It can be seen from Fig. 4a–c that the effect of DDS is still
the worst in most cases, which implies that PCA almost can-
not alleviate the problem caused by the dependence among
coordinates for DDS. Other techniques should be taken into
account for improving DDS. Twinning is worse than SPlit
in many cases and shows instability. Compared with SPlit,
2-d GLSSh gives comparable and satisfying prediction per-
formance in terms of the resulting log RMSPEs when d is
small and it can be better than SPlit when d is large. As for the
comparison of the computational complexity in Fig. 4d, SPlit
still spends the most running time, whereas the time costs of

123

Statistics and Computing (2023) 33 :9 Page 9 of 16 9

Fig. 4 The comparison of a–c
the log RMSPEs for different
numbers of dimension and
models under URS, SPlit,
Twinning, DDS, and 2-d GLSSh
and d the average time for
running each subsampling
method once in Sect. 4.2

(a) (b)

(c) (d)

Twinning, DDS, and 2-d GLSSh are much lower than SPlit.
When d goes larger, the cost ofDDSmainly lies in finding the
nearest neighbor in the d-dimensional data, while 2-dGLSSh
still conducts it in the 2-dimensional space. Thus, the com-
plexity of 2-d GLSSh becomes lower than DDS when d goes
large. GLSS can also be faster than twinning with larger d.
Hence, Fig. 4 demonstrates the effectiveness and speediness
of 2-d GLSSh for data with different original numbers of
dimensions.

4.3 Comparison between GLSSh and IBOSS, MV, MVc

In this section, we compare GLSSh with some model-based
methods, i.e., IBOSS, MV, and MVc, which derive the sub-
sampling rules to optimize the estimators of the regression
coefficients in their respective considered models. When
the parameter of interest is the coefficient estimation, those
model-basedmethodsmayoutperformGLSS.However,with
the sampled data, if our interest is changed, e.g., the popula-
tionmean,GLSSmayoutperform those optimal subsampling
methods for coefficient estimation in a specific model. To
illustrate this point, we study two cases to compare GLSSh
with IBOSS,MV, andMVc. In Case 1, the data are generated
from a linear model y(x) = β	x+ε; in Case 2, similar to Yu
et al. (2022), the data are generated from a Poisson regression
model such that given the predictor x, the response y follows
a Poisson distribution with mean E(y|x) = exp(β	x). For
both cases, the sizes of the full data are N = 5e5 and the
predictors in x = (x1, . . . , x7) are generated from the uni-
form distribution, i.e., x1, x5 ∼ U (0, 1), x6, x7 ∼ U (−1, 1),
xi = xi−1 + ε0 for i = 2, 3, 4, and ε, ε0 ∼ U (0, 0.1).
The true value of β is set as a 7 × 1 vector of 0.5 and let
n = 500, 700, 900.

In Case 1, we subsample from the full data by 2-d
GLSSh and IBOSS. In 2-d GLSSh, the contribution rate with
d ′ = 2 is 74.56% and we set M = 907, 1202, 1277 for
n = 500, 700, 900, respectively. In Case 2, we subsample
from the full data by 2-d GLSSh, MV, and MVc. In 2-d
GLSSh, the contribution rate with d ′ = 2 is 71.45% and
we set M = 907, 1171, 1361 for n = 500, 700, 900, respec-
tively. We choose the subdata size as 200 to gain the pilot
estimates inMVandMVc. For both cases, based on then-size
subsamples from the considered methods, we do regressions
(linear regression for Case 1; Poisson regression for Case 2)
and compute the average log MSE for the regression coeffi-
cient and the populationmean. Figure5 depicts the results for
the two cases. In Fig. 5a and c, IBOSS, MV, and MVc show
their superiority in coefficient estimation. It can also be seen
that when n = 500, GLSSh gives a relatively good perfor-
mance, i.e., it has a similar log MSE value to IBOSS, and
smaller log MSE than MVc. From Fig. 5b and d, compared
with IBOSS, MV, and MVc, GLSSh always has smaller log
MSEs of the populationmeanwhatever n is.Moreover, in the
considered cases,MVandMVc always have larger logMSEs
of the populationmean thanURS. The reasonmay be that the
subsampling probabilities in MV and MVc are proportional

to the values |yi − exp(β̂
	
fullxi)| for i = 1, . . . , N , where

β̂full is the QLE based on the full data. Hence, it implies that
the optimal subsampling methods with similar subsampling
probabilities, e.g., Wang et al. (2018), can result in similar
phenomena. In conclusion, when the evaluation criterion is
inconsistent with the criterion that derives the subsampling
rule, GLSSh may be a better choice.

123

9 Page 10 of 16 Statistics and Computing (2023) 33 :9

Fig. 5 The comparison of
IBOSS, MV, MVc, and 2-d
GLSSh in terms of log MSE of
the regression coefficient (COE)
and the population mean
(yMEAN) in Sect. 4.3

(a) (b)

(c) (d)

4.4 The effect of contribution rate in GLSSh

In this subsection, we discuss the impact of the contribution
rate (CR) based on SVD in GLSSh according to a linear data-
generating model as

y(x) = x1 + · · · + xd−1 + ε,

x1, . . . , xd−1
i .i .d∼ N (0, 1), ε ∼ N (0, 1). (4)

The number of dimensions d is set as 3, 4, 5, 8, Ntr = 5e5,
Nte = 5e4 and n = 300. Both the training and testing sets
are generated by the model (4). The numbers of dimension
d = 3, 4, 5, 8 are reduced to d ′ = 2 by SVD with the con-
tributions accounting for 93.87, 71.64, 57.90, 36.77% of the
total variation in the training data. Contrary to Sect. 4.2, as
the increase of d, the contribution rate becomes lower. We
apply the 2-d GLSSh to the training set, in which M is set as
881, 877, 883, 953 for d = 3, 4, 5, 8, respectively. Based on
the subsamples, we also fit the linear andGPmodels incorpo-
rating the terms x1, . . . , xd−1 and compute the log RMSPEs
using the testing data based on the fitted models. From Fig. 6,
it can be seen that with the decrease of the contribution
rate, the variance of the resulting log RMSPEs based on 2-d
GLSSh would relatively increase compared with those based
on URS. However, the prediction result based on 2-d GLSSh
is always better than URS with smaller log RMSPEs, even
when the contribution rate is lower than 40%. It illustrates
that with a high contribution rate, GLSSh can attain good
performance, and the corresponding performance would not
be much worse when the rate is low.

4.5 The effective number of dimensions in GLSSh

In the previous discussions, we mainly focus on the 2-d
GLSSh, i.e., we reduce the original number of dimensions
d to d ′ = 2. In this subsection, we consider the impact of
different d ′s with d = 10 by the data-generating model

y(x) = x1 + · · · + x5 + (x6 + · · · + x9)
2 + ε, (x1, . . . , x9)

	

∼ N9(0, �), ε ∼ N (0, 1), (5)

where 0 is a 9 × 1 vector with zeros and the (i, j)th entry
of � is �i, j = 0.8|i− j | for i = 1, . . . , 9, j = 1, . . . , 9.
Here we also fix Ntr = 5e5, Nte = 5e4, n = 300 and
set d ′ = 2, 3, 4, 5, whose contributions by SVD account
for 70.97%, 80.22%, 87.72%, 91.73% of the total variation
in the 10-dimensional training data, respectively. Then, the
2-d, 3-d, 4-d and 5-d GLSShs are performed with M set
as 809, 4099, 9497, 34019, respectively. The linear, GP, and
MARSmodels are considered based on the subsamples from
the training set. For fitting the linear model and the mean
function of the GP model, only the linear terms x1, . . . , x9
are incorporated. Based on the fitted models and the testing
set, we compute the log RMSPEs and compare themwith the
corresponding result under URS, which is shown in Fig. 7.

It can be seen that all the considered cases for GLSSh are
better thanURSwith smaller log RMSPEs. Especially, under
the GP model that gives the best prediction result among the
three models, 2-d GLSSh even performs better than others.
It implies that under the same original data, when the contri-
bution rate is not low, e.g., higher than 70%, 2-d GLSSh not
only possesses the lowest computational complexity com-
pared with other cases with larger d ′, but also retains a good
performance, even better. For the cases d ′ > 2, better perfor-
mance may exist compared with the current result in Fig. 7

123

Statistics and Computing (2023) 33 :9 Page 11 of 16 9

Fig. 6 The comparison of log
RMSPEs under URS and 2-d
GLSSh with different
contribution rates (CRs) in
Sect. 4.4

(a) (b)

(c) (d)

Fig. 7 The comparison of log RMSPEs under URS and GLSSh with
d ′ = 2, 3, 4, 5 in Sect. 4.5

because of the higher contribution rate, but it may also need
a larger M that further increases the complexity.

5 Real data studies

In this section, to further demonstrate the validity of GLSS,
we apply it to six real datasets for data compression, where
the datasets can be obtained from the UCI Machine Learn-
ing Repository (Dua and Graff 2019). Four of the datasets
are used for regression and the other two are used for classi-
fication. In each dataset, we randomly partition the full data
into a training set and a testing set. For comparison, URS,
Twinning, and GLSSh are considered on the training set for
subsampling. Similar to Sect. 4, we consider the impact of
the size of the final subsample n on the subsampling per-
formance under the first dataset. For other datasets, we fix
n and mainly focus on the comparison of different subsam-
pling methods. We use the default setting in the twinning
R package to implement Twinning. For the datasets used
for classification, there exist some categorical variables in

the predictors or response. We transform these categorical
variables into dummy variables, i.e., for a s-level categori-
cal variable, we encode it using s − 1 dummy variables. For
example, if a categorical variable x has three levels, we need
two dummy variables z1, z2, in which x = 1 corresponds to
z1 = 1, z2 = 0; x = 2 corresponds to z1 = 0, z2 = 1; x = 3
corresponds to z1 = 0, z2 = 0. The dummy variables can
be regarded as the numerical variables to perform GLSS and
Twinning. All the numerical variables in these datasets are
normalized to mean 0 and standard deviation 1 before sub-
sampling. We repeat URS, Twinning, and GLSSh 50 times
and in each repetition of GLSSh, we slightly shift the GLP.

For regression, based on each subsample, we also perform
the linear, GP, and MARS regressions. When the number of
the predictors is larger than 5, we use the LASSO regression
to replace the ordinary linear regression or select significant
predictors by thePearson correlation coefficients between the
predictors and response before subsampling. We still adopt
log RMSPE to measure the prediction performance on the
testing set. For classification, we conduct the random forest
(Breiman 2001) and the logistic regression on the obtained
subsamples. For multi-class classification in logistic regres-
sion, we convert it into several binary classifications. Each
classifier canpredict the probability that a test sample belongs
to the positive class in the prediction stage. Then we select
the classifier with the highest probability and take its positive
class as the prediction result. For both classificationmethods,
the prediction performance is measured by the prediction
accuracy, i.e., the number of correct predictions divided by
the total number of predictions, in the testing set to compare
the subsampling methods. Similar to Sect. 4, for the same
training set, the parameter settings for each model under dif-
ferent subsamples are the same for a fair comparison.

123

9 Page 12 of 16 Statistics and Computing (2023) 33 :9

5.1 Regression

5.1.1 Combined cycle power plant dataset

The combined cycle power plant (CCPP) dataset contains
9568 samples with 4 continuous predictors and the response
is the net hourly electrical energy output of the plant. We
partition the full data into a training set with 9000 samples
and a testing set with 568 samples. For GLSSh, we reduce
the number of dimensions d = 5 to d ′ = 2 by SVD, which
explains 84.65% of the total variation in the training data.We
set n = 300, 600, 900, 1200 and performURS, Twinning, 2-
dGLSSh withM = 863, 1051, 1171, 1277 for each n in turn.
Figure8 shows the result for the log RMSPEs based on the
fitted models using different n-size subsamples. Clearly, in
most cases of each subfigure in Fig. 8, the result under 2-d
GLSSh is more inclined to smaller log RMSPEs than those
under URS and Twinning in the three regression methods. It
implies that GLSSh performs better than URS and Twinning
in many cases. Moreover, it again illustrates that the subsam-
ple size n has little impact on the performance comparison.

5.1.2 Condition-based maintenance of naval propulsion
plants dataset

The condition-based maintenance of naval propulsion plants
(CBM) dataset contains 11,934 samples with 16 continuous
predictors and 2 responses, that is, the gas turbine compres-
sor and turbine decay state coefficients. We focus on the first
response. The full data is partitioned into a training set with
10,000 samples and a testing set with 1934 samples. We
reduce the dimension of the training data to 2 with the con-
tribution accounting for 97.74% of the total variation. We fix
n = 300 and perform URS, Twinning, and 2-d GLSSh with
M = 929. For modeling, we perform the LASSO regression,
where the penalty coefficient is determined by 10-fold cross-
validation, and model GP and MARS using the significant
predictors by LASSO based on the subsamples. The result is
shown in Fig. 9a. It can be seen that except for MARS, 2-d
GLSSh shows better prediction quality compared with URS
and twinning. Under MARS, 2-d GLSSh is still better than
URS and slightly worse than twinning. However, 2-d GLSSh
has better worst-case performance than Twinning.

5.1.3 MiniBooNE particle identification dataset

The MiniBooNE particle identification (MBP) dataset has
130,065 samples with 50 particle ID real variables. We treat
the last variable as the response and the other 49 variables as
the predictors. The full data is partitioned into a training set
with 120,000 samples and a testing set with 10,065 samples.
Since the number of the dimensions is large, we first perform
variable selection based on the normalized training data by

calculating the Pearson correlation coefficients between the
predictors and response.

It is found that the correlation is high and 8 significant
predictors are selected.We further reduce the dimension from
9 (i.e., 8 significant predictors and 1 response) to d ′ = 2
with the contribution accounting for almost 100% of the total
variation in the 9-dimensional data. We fix n = 300 and
perform URS, Twinning, and 2-d GLSSh with M = 919 on
the reduced 9-dimensional data for data compression. Based
on the obtained subsamples,wefit the response only using the
significant variables by the considered modeling methods.
The result is shown in Fig. 9b. Under MARS, 2-d GLSSh
is better than URS and Twinning. As for the results under
LASSO and GP, all the log RMSPEs based on Twinning and
2-d GLSSh are relatively small. 2-d GLSSh performs better
than URS, whereas it performs slightly worse than Twinning
under LASSO andGPmodels. However, 2-d GLSSh also has
better worst-case performance under the GP model.

5.1.4 Wave energy converters dataset

The wave energy converters (WEC) dataset consists of
288,000 samples with 48 continuous predictors and 1
response, i.e., the total power output of the farm. The full
data is divided into a training set with 250,000 samples and a
testing set with 38,000 samples. Similar to the MBP dataset,
we first perform variable selection based on the training data.
16 significant predictors are selected and then by SVD, we
reduce the dimension from 17 (i.e., 16 significant predictors
and 1 response) to 2 with the contribution accounting for
95.11% of the total variation. We fix n = 300 and URS,
twinning, 2-d GLSSh with M = 911 are performed on the
reduced 17-dimensional data. For modeling, the number of
significant predictors is still large and it would spend a large
amount of time if all the significant predictors are incorpo-
rated into the model, especially for GP andMARS. Thus, we
try to fit themodels using partial significant predictors, which
are selected according to the absolute values of the correla-
tion coefficients. It is found that using the 7 most significant
predictors can obtain relatively good prediction performance
and the time cost for modeling is also reduced.

Figure9c shows the corresponding prediction result.
Under all the models, 2-d GLSSh performs better than URS
andTwinningwith smaller logRMSPEs.Hence, based on the
variable selection and the dimension reduction techniques,
the effectiveness of 2-d GLSSh is further illustrated for high-
dimensional data.

5.2 Classification

5.2.1 High time resolution universe survey dataset

The high time resolution universe survey dataset (HTRU)
contains 17,898 samples with 8 continuous predictors and

123

Statistics and Computing (2023) 33 :9 Page 13 of 16 9

Fig. 8 The comparison of log
RMSPEs under URS, Twinning,
and 2-d GLSSh with
n = 300, 600, 900, 1200 for the
CCPP dataset in Sect. 5.1

(a) (b)

(c) (d)

(a) (b) (c)

Fig. 9 The comparison of log RMSPEs under URS, Twinning, and 2-d GLSSh for the CBM, MBP, and WEC datasets in Sect. 5.1

a two-level categorical response. The categorical response
is encoded with a dummy variable. Then, the full data is
partitioned into a training set with 15,000 samples and a test-
ing set with 2898 samples. We reduce the dimension of the
training data from 9 to 2 with the contribution accounting
for 77.69% of the total variation. We fix n = 300 and URS,
Twinning, 2-d GLSSh withM = 877 are performed on the 9-
dimensional training set for compression. Figure10a shows
the prediction accuracies on the testing set under different
classification methods fitted by the obtained subsamples. It
can be seen that Twinning is better than URS and the average
prediction performance under 2-d GLSSh is better than those
under both URS and Twinning in the two classificationmeth-
ods.Also, 2-dGLSSh has betterworst-case performance than
the other two subsampling methods.

5.2.2 Major atmospheric gamma imaging Cherenkov
telescope dataset

The major atmospheric gamma imaging Cherenkov tele-
scope dataset (MAGIC) consists of 19,020 samples with
10 continuous predictors and 1 categorical response. The
response characterizes whether an event is a background or

a signal and we encode the categorical response by a dummy
variable. We partition the full data into a training set with
15,000 samples and a testing set with 4020 samples. Similar
to the MBP and WEC datasets, we first conduct the variable
selection based on the training set, in which 6 important pre-
dictors are selected. Then, we reduce the dimension from 7
(i.e., 6 important predictors and 1 dummy variable) to 2 with
the contribution accounting for 71.67% of the total variation
in the 7-dimensional data.We fix n = 300 and performURS,
Twinning, 2-d GLSSh with M = 863 on the reduced training
data. Figure10b shows the corresponding prediction result.
Similarly, the performance of 2-d GLSSh is better than URS
andTwinningwith higher accuracy for theMAGICdataset. It
illustrates the effectiveness of GLSSh for classification when
the categorical variables are encoded by dummy variables.

6 Conclusion and discussion

In this paper, we develop a model-free subsampling method
called GLSS, which leverages the idea of the GLS sampling
method. The convergence result of GLSS is derived based on
the KDE technique and the GLS algorithm. A good setting

123

9 Page 14 of 16 Statistics and Computing (2023) 33 :9

Fig. 10 The comparison of the
prediction accuracy under URS
and 2-d GLSSh for the HTRU
and MAGIC datasets in Sect. 5.2

(a) (b)

for the run size of the used space-filling designM is essential,
which may be associated with the number of dimensions d,
the size of the full data N , and the subsample size n. We rec-
ommend choosing M = exp(2(d + ν)), where −d < ν ≤ 2.
The ν is larger when N or n is larger to capture the data
structure better, while ν is smaller when d is larger for con-
trolling the computational complexity. GLSSa is discussed to
accelerate the algorithm by performing URS from the origi-
nal large-scale data before running GLSS. We also propose
GLSSh by utilizing SVD to extend GLSS to handle high-
dimensional data.

In the simulation studies, under different data-generating
models and modeling methods, we compare URS, SPlit,
Twinning, DDS, GLSS, GLSSa, and GLSSh with different
subsample sizes, training data sizes, and different num-
bers of dimensions. The prediction result on the testing
data and the running time show the superiority of GLSS,
GLSSa and GLSSh on the model-free property. In most
cases, compared with URS, Twinning, and DDS, GLSS or
GLSSh gives better prediction performance with smaller log
RMSPEs. Compared with SPlit, GLSS is comparable in
many low-dimensional cases and GLSSh can be better in
high-dimensional cases. It illustrates that when the contribu-
tion rate by SVD with d reduced to d ′ is not low, e.g., larger
than 70%, d ′-d GLSSh usually can produce good perfor-
mance with relatively low computational complexity based
on the high-dimensional data. GLSSa is effective when the
data size is large, e.g., N > 5e5. The complexity of GLSS,
GLSSa, or GLSSh is also much lower than SPlit. Moreover,
we also compare GLSSh with IBOSS, MV, and MVc. The
simulation results show that GLSSh has a good performance
and robustness when the evaluation interest is the mean pop-
ulation, which is different from the criterion that derives the
subsampling rule for the model-based optimal subsampling
methods.

In real data studies for data compression, both regres-
sion and classification problems are taken into consideration,
where the categorical variables are encoded by dummy vari-
ables. In practice, there are usually not many significant
variables and for ultrahigh-dimensional data, both the vari-
able selection and dimension reduction techniques can be
taken into account.

We reduce the number of all the variables or the significant
variables by SVDwith a relatively high contribution rate, i.e.,
all of them are larger than 70%. Then, we fit different mod-
els using the subsamples obtained by URS, Twinning, and
GLSSh from the training data and test the prediction per-
formance on the testing data. In most cases, GLSSh brings
better prediction performance than URS and Twinning and
significantly improves the worst-case performance. It further
demonstrates thatGLSSh is amodel-robust and effective sub-
sampling method. Hence, both the simulations and real data
studies verify the validity of the proposed GLSS algorithm
and its variants for data compression.

In addition, GLSS can also be extended to generate mul-
tiple batches of subsamples by performing random shifts on
the space-filling design such that each batch of the subsam-
ple is a statistically good representation of the full data. A
possible application is to replace the uniform random sample
in each iteration of the stochastic gradient descent algorithm
(Bottou 2012) with the subsample from each batch of GLSS,
which may bring a higher convergence rate and more stable
performance. The deterministic shifts for the space-filling
design can also be studied for a better space-filling prop-
erty. Another potential application is in the scalable Markov
chain Monte Carlo for more representative subsampling in
some sense. It is beyond the scope of the paper but important
and worthy of further investigation.

Acknowledgements The authors would like to thank the two refer-
ees for their valuable comments that lead to a significant improvement
of the presentation. This work was partial supported by the National
Natural Science Foundation of China (11871288 and 12131001)), the
Fundamental Research Funds for the Central Universities, LPMC, and
KLMDASR.

Author Contributions Yi, S. wrote the main manuscript text and Zhou,
Y. provided the research idea and modified the whole paper. All authors
reviewed the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

123

Statistics and Computing (2023) 33 :9 Page 15 of 16 9

Appendix

Proof of Lemma 1 By Theorem 2 in Jiang (2017), we directly
have

sup
θ∈Rd

| f̂K(θ) − f (θ)| = OP(�).

Let the support of f be T and the volume of T is v(T) =
VT < ∞. Then,

sup
θ∈Rd

|F̂K(θ) − F(θ)| = sup
θ∈Rd

∣
∣
∣
∣

∫

(−∞,θ]∩T
(f̂K(ϑ) − f (ϑ))dϑ

∣
∣
∣
∣

≤ sup
θ∈Rd

∫

(−∞,θ]∩T
| f̂K(ϑ) − f (ϑ)|dϑ

≤VT · sup
θ∈Rd

| f̂K(θ) − f (θ)| = OP(�),

which completes the proof. ��
Proof of Lemma 2 Let F̃(θ) be the multinomial distribution
placing mass f̂K(sk)/

∑M
i=1 f̂K(si) at sk, k = 1, . . . , M .

Similar to the proof of Lemma 1(1) in Yi et al. (2022), if
S is the low-discrepancy point set and f̂K(x)I[−∞,θ](x) is
of uniformly bounded variation for any θ ∈ R

d , then for any
θ ∈ R

d , we have

|F̃(θ) − F̂K(θ)| = O(κ(M)).

Let Dm = {(2 j − 1)/2n : j = 1, . . . , n}. Then, by the proof
of Theorem 2 in Yi et al. (2022), we can obtain that

FZs(θ) = 1

n

∑

u∈Dm

�θ (u), F̃(θ) =
∫

[0,1]
�θ (u)du.

Thus, |FZs(θ) − F̃(θ)| can be viewed as the quasi-Monte
Carlo error based on Dm. The star discrepancy of Dm is
always no more than 1/n. Hence, by the Koksma-Hlawka
inequality (Hlawka 1961), if �θ (u) is of uniformly bounded
variation for any θ ∈ R

d and run size M of the space-filling
design S, then for any θ ∈ R

d , we have

|FZs(θ) − F̃(θ)| = O

(
1

n

)

.

Since the above formula is valid for any θ ∈ R
d , it is also true

for the supremum value. Then, by the triangle inequality,

sup
θ∈Rd

|FZ̃s
(θ) − F̂K(θ)|

≤ sup
θ∈Rd

|F̃(θ) − F̂K(θ)| + sup
θ∈Rd

|FZs(θ) − F̃(θ)|

= O

(

max

{

κ(M),
1

n

})

,

which completes the proof.

Proof of Theorem 3 Based onLemmas 1 and2, by the triangle
inequality, we directly have

sup
θ∈Rd

|FZ̃s
(θ) − F(θ)| = OP

(

max

{

�, κ(M),
1

n

})

.

Let D = ⊗d
i=1[ai , bi] and δ be the volume of the union of

the balls B(si , r), i = 1, . . . , M , divided by the volume of
⊗d

i=1[ai − r , bi + r]. Since r is set as half of the separation
distance of S, we have δ

∏d
i=1(2r + bi − ai) = Mvdrd .

Without loss of generality, let ai = 0 and bi = 1 for i =
1, . . . , d, which leads to r = 1/[(Mvdδ

−1)1/d − 2]. Then,
we have r = O(M−1/d), which is also true when ai and
bi (ai < bi) take any other bounded values for i = 1, . . . , d.

Based on the result, we have � = O(M−α/d +
(M log N/N)1/2). In addition, we can easily obtain that
M−α/d > 1/M if d = 1, and M−α/d > (logM)d/M
as M → ∞ if d > 1. Thus, OP(max{�, κ(M)}) =
OP(M−α/d + (M log N/N)1/2) as M → ∞, which com-
pletes the proof.

Proof of Lemma 4 For any zs ∈ Zs and θ ∈ R
d , we have

P(zs ∈ (−∞, θ]) = E(E(I(−∞,θ](zs | Z))) = E(FZ (θ))

= F(θ),

where FZ is the ECDF of Z . Hence, any element in Zs

follows the CDF F . By the multivariate Dvoretzky-Kiefer-
Wolfowitz inequality (Naaman 2021), we have

sup
θ∈Rd

|F(θ) − FZs(θ)| = OP

(
1√
Ns

)

,

which completes the proof.

References

Bentley, J.L.: Multidimensional binary search trees used for associative
searching. Commun. ACM 18(9), 509–517 (1975)

Bottou, L.: Stochastic Gradient Descent Tricks, Neural Networks:
Tricks of the Trade, pp. 421–436. Springer, Berlin (2012)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Davis, R.A., Lii, K.S., Politis, D.N.: Remarks on Some Nonparamet-

ric Estimates of a Density Function, Selected Works of Murray
Rosenblatt, pp. 95–100. Springer, New York (2011)

Dua, D., Graff, C.: UCI machine learning repository. URL http://
archive.ics.uci.edu/ml (2019)

Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional
feature space. J. R. Stat. Soc. Ser. B 70(5), 849–911 (2008)

Fang, K.T., Liu, M.Q., Qin, H., Zhou, Y.D.: Theory and Application of
Uniform Experimental Designs. Springer, Singapore (2018)

Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat.
19(1), 1–67 (1991)

123

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

9 Page 16 of 16 Statistics and Computing (2023) 33 :9

Hastings, W.K.: Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 97–109 (1970)

Hlawka, E.: Funktionen von beschränkter variatiou in der theorie der
gleichverteilung. Annali di Matematica Pura ed Applicata 54(1),
325–333 (1961)

Jiang, H.: Uniform convergence rates for kernel density estimation. In:
International Conference on Machine Learning, pp. 1694–1703.
PMLR (2017)

Joseph, V.R., Vakayil, A.: Split: an optimal method for data splitting.
Technometrics 64(2), 166–176 (2022)

Liang, F., Wong, W.H.: Real-parameter evolutionary Monte Carlo with
applications to Bayesian mixture models. J. Am. Stat. Assoc.
96(454), 653–666 (2001)

Ma, P., Mahoney, M., Yu, B.: A statistical perspective on algorithmic
leveraging. In: International Conference onMachine Learning, pp.
91–99. PMLR (2014)

Mahoney, M.W.: Randomized algorithms for matrices and data. Found.
Trends Mach. Learn. 3(2), 123–224 (2011)

Maire, F., Friel,N.,Alquier, P.: Informed sub-samplingMCMC: approx-
imate Bayesian inference for large datasets. Stat. Comput. 29(3),
449–482 (2019)

Meng, C., Xie, R., Mandal, A., Zhang, X., Zhong, W., Ma, P.: Low-
con: a design-based subsampling approach in a misspecified linear
model. J. Comput. Graph. Stat. 30(3), 694–708 (2021)

Naaman, M.: On the tight constant in the multivariate Dvoretzky–
Kiefer–Wolfowitz inequality. Stat. Probab. Lett. 173, 109088
(2021)

Nuyens, D., Cools, R.: Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing
kernel Hilbert spaces. Math. Comput. 75(254), 903–920 (2006)

Parzen, E.: On estimation of a probability density function and mode.
Ann. Math. Stat. 33(3), 1065–1076 (1962)

Rubin, D.B.: A noniterative sampling/importance resampling alterna-
tive to data augmentation for creating a few imputations when
fractions of missing information are modest: the sir algorithm. J.
Am. Stat. Assoc. 82, 544–546 (1987)

Santner, T.J.,Williams, B.J., Notz,W.I.,Williams, B.J.: The Design and
Analysis of Computer Experiments. Springer, New York (2003)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R.
Stat. Soc. Ser. B 58(1), 267–288 (1996)

Ting, D., Brochu, E.: Optimal subsampling with influence functions. In:
Advances in Neural Information Processing Systems, pp. 3650–
3659 (2018)

Vakayil, A., Joseph, V.R., Mak, S., Vakayil, M.A.: Package ‘SPlit’. R
package version 1.0 (2022)

Vakayil, A., Joseph, V.R., Vakayil, M.A.: Package ‘twinning’. R pack-
age version 1.0 (2022)

Vakayil, A., Joseph, V.R.: Data twinning. Stat. Anal. Data Min. ASA
Data Sci. J. 15, 598–610 (2022)

Wang, D., Joseph, V.R.: Mined: minimum energy design. R Package
Version 1.0 (2022)

Wang, Y.C., Ning, J.H., Zhou, Y.D., Fang, K.T.: A new sampler: ran-
domized likelihood sampling. In: Souvenir Booklet of the 24th
International Workshop on Matrices and Statistics, pp. 255–261
(2015)

Wang, H., Ma, Y.: Optimal subsampling for quantile regression in big
data. Biometrika 108(1), 99–112 (2021)

Wang, H., Zhu, R., Ma, P.: Optimal subsampling for large sample logis-
tic regression. J. Am. Stat. Assoc. 113(522), 829–844 (2018)

Wang, H., Yang, M., Stufken, J.: Information-based optimal sub-
data selection for big data linear regression. J. Am. Stat. Assoc.
114(525), 393–405 (2019)

Wang, L., Elmstedt, J., Wong, W.K., Xu, H.: Orthogonal subsampling
for big data linear regression. Ann. Appl. Stat. 15(3), 1273–1290
(2021)

Yi, S.Y., Liu, Z., Liu, M.Q., Zhou, Y.D.: Global likelihood sampler for
multimodal distributions. Submitted (2022)

Yu, J., Wang, H., Ai, M., Zhang, H.: Optimal distributed subsampling
for maximum quasi-likelihood estimators with massive data. J.
Am. Stat. Assoc. 117(537), 265–276 (2022)

Zhang, M., Zhou, Y.D., Zhou, Z., Zhang, A.J.: Model-free subsampling
method based on uniform designs. arXiv:2209.03617 (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/2209.03617

	Model-free global likelihood subsampling for massive data
	Abstract
	1 Introduction
	2 Methodology
	2.1 Global likelihood sampler
	2.2 Global likelihood subsampling

	3 Theoretical results
	4 Numerical examples
	4.1 Comparison of GLSS, GLSSa and URS, SPlit, twinning, DDS
	4.2 Comparison of GLSSh and URS, SPlit, twinning, DDS
	4.3 Comparison between GLSSh and IBOSS, MV, MVc
	4.4 The effect of contribution rate in GLSSh
	4.5 The effective number of dimensions in GLSSh

	5 Real data studies
	5.1 Regression
	5.1.1 Combined cycle power plant dataset
	5.1.2 Condition-based maintenance of naval propulsion plants dataset
	5.1.3 MiniBooNE particle identification dataset
	5.1.4 Wave energy converters dataset

	5.2 Classification
	5.2.1 High time resolution universe survey dataset
	5.2.2 Major atmospheric gamma imaging Cherenkov telescope dataset

	6 Conclusion and discussion
	Acknowledgements
	Appendix
	References

