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Abstract—This paper studies the problem of graph zero-shot
learning, which aims at recognizing novel classes of nodes on
the graph that are never seen during training. The key to graph
zero-shot learning is establishing the mathematical relationship to
transfer the prior knowledge of nodes from seen classes to unseen
classes. However, the problem is largely under-explored and
existing methods typically focus on acquiring supervision signals
from seen classes or simply establishing connections between
classes based solely on a semantic description matrix, such
that the learned representations lack generalizable properties
to unseen classes. To address this issue, this paper proposes
GraphGCR that learns generalizable contrastive representations
from the perspective of uniformity and alignment. Technically,
GraphGCR leverages graph diffusion to extend supervised con-
trastive learning, encouraging the representations of semantics
from different classes to be distributed uniformly and meanwhile
achieve the alignment of node features and class semantics with
the assistance of graph structural information. Moreover, to
effectively enhance model generalizability, we further develop
a class generator to synthesize features of unseen classes by
embedding propagation and interpolation, thereby enriching the
diversity of classes. Theoretical analysis also shows that our
proposed framework exhibits strong discriminative property,
which significantly enhances graph zero-shot learning. Experi-
mental findings reveal that our GraphGCR achieves significant
performance improvements over state-of-the-art methods across
various benchmark datasets.

Index Terms—Graph Neural Networks, Zero-shot Learning,
Contrastive Learning
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RAPH-STRUCTURED data is prevalent across a broad
Gspectrum of real-world scenarios, such as social net-
works and molecular graphs. Understanding the interactions
between entities in these networks is crucial. One key task in
this field is node classification, where the goal is to classify the
unlabeled node given a small set of labeled nodes in a graph.
Recently, there has been significant interest in using graph
neural networks (GNNs) for this task [1]-[4], with notable
successes. These models have shown promise in domains
like multimedia analysis, where understanding relationships
between different types of media content is essential.

However, the graph typically evolves in dynamic with the
emergence of nodes and edges, thereby inevitably arising novel
classes. For example, when a new protein is discovered in
the biological interaction network, the new role of this protein
needs to be recognized to facilitate the study of the interaction
mechanism between it and other proteins. Besides, in citation
networks, the publication of new research papers often leads
to new interdisciplinary subjects. Unfortunately, traditional
GNNss typically assume that all classes are fixed and covered
by the classes of labeled nodes [1]. When encountering newly
emerging classes, GNNs are required to collect a large amount
of labeled data for the new classes to achieve satisfactory
performance. However, annotating these labels is a time-
consuming and costly process [5]-[8]. In other words, vanilla
GNNs show the inability to deal with these dilemmas. It thus
naturally raises a question: can we effectively predict the nodes
for the newly emerging classes?

To answer this question, we adopt the concept of zero-
shot learning (ZSL) [9] to classify the novel classes of nodes
on the graph that are never seen during training, which is a
challenging yet promising task that remains largely unexplored
before. We term this kind of task as graph zero-shot learning.
ZSL has been extensively studied in computer vision [10]—
[17], focusing on recognizing samples from new classes with
auxiliary semantic information, e.g., category attributes [18].
The key to ZSL is establishing the relationship between the
representation space and the semantic space, and generalizing
this prior knowledge to unseen classes. However, applying
ZSL techniques directly to graph domains poses a significant
challenge, since graphs inherently are non-independent and
identically distributed, the nodes in a graph interact and influ-
ence each other, and how to capture these complex connections
is a crucial challenge.

To achieve effective graph zero-shot learning, there are a
handful of works to conduct preliminary exploration [19]-[21].
DGPN [19] designed a generalized graph-based model using
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locality and compositionality principles based on the obtained
class semantic descriptions, DBiGCN [20] introduced two dual
GCNs operating in opposite directions to facilitate mutual
enhancement, while GraphCEN [21] utilized multi-granularity
information through two-level contrastive learning to optimize
representation learning and class assignments collaboratively.
Nevertheless, there still exist some inherent issues. First, these
methods primarily concentrate on establishing the connection
among the classes based solely on a semantic description
matrix, ignoring the informative properties of class and node
representations or the utilization of graph structural infor-
mation, which results in sub-optimal model generalizability.
Second, existing methods typically acquire supervision signals
from seen classes, and those for the unseen class semantics
have not been fully explored, which easily suffer from the
distribution-shift problem [22] when applied to disjoint unseen
classes. As such, it is highly desirable to develop a simple
yet effective approach that can alleviate the distribution-shift
problem, and meanwhile achieve generalizable properties.

In this work, we present a novel framework GraphGCR to
address these issues. The key idea of GraphGCR is to learn
generalizable contrastive representations from the perspective
of uniformity and alignment, and make the desired properties
inherent in the learned representations have better general-
ization when facing the newly emerging classes. Specifically,
GraphGCR is built on an optimization framework of super-
vised contrastive learning [23] coupled with graph diffusion
to incorporate the discriminative property and graph structural
information into the learned representations, which consists of
two supervision signals to regularize the feature representation
learning, i.e., class uniformity and feature alignment. On the
one hand, class uniformity encourages the representations of
semantics from different classes to be distributed uniformly
and preserves maximal information on the unit hypersphere,
which is crucial when generalizing to unseen classes. On
the other hand, feature alignment requires the representations
of node features and class semantics from the same class
to be as close as possible. When node features are well-
aligned with class semantics, the model can more accurately
associate new nodes with the correct classes based on their
semantic similarities under the blessing of class uniformity,
thus improving generalization to unseen classes for graph
zero-shot learning task. Further, to effectively alleviate the
distribution-shift problem, we develop a class generator to
synthesize features of unseen classes by embedding propaga-
tion and interpolation from seen classes, which can provide
additional supervision signals and thus well guarantee the
generalization to newly emerging classes. We also provide
a theoretical analysis showing that by incorporating graph
structural information, our proposed framework exhibits strong
discriminative capabilities under finite samples, thereby signif-
icantly enhancing graph zero-shot learning. By incorporating
these desired properties into the learned representations, our
experiments on benchmark datasets verify that our GraphGCR
achieves state-of-the-art performance, and shows better close-
ness within classes and preserves more uniformity between
class semantics. In summary, the primary contributions of our
research can be summarized as follows:

« We study a promising yet largely under-explored prob-
lem: graph zero-shot learning, involving recognizing
novel classes of nodes that are never seen during training.
Despite its potential impact, very few algorithms have
been developed to tackle this issue within the graph
domain. Our work aims to shed light on this area, offering
new perspectives that could inspire future research.

« We propose a novel model to incorporate uniformity and
alignment into the learned representations and synthesize
features of unseen classes by embedding propagation and
interpolation to enhance model generalizability.

o Our theoretical analysis shows that with finite samples,
our framework incorporating graph structural information
can learn informative properties of nodes and classes,
thereby enhancing graph zero-shot learning.

« We conduct experiments to showcase the efficacy of our
GraphGCR across multiple benchmark datasets, compar-
ing its performance against the state-of-the-art methods.
Additionally, the node representations learned by our
framework exhibit notable uniformity and alignment.

II. RELATED WORK
A. Graph Neural Networks

Given their capacity to effectively model graph-structured
data, graph neural networks (GNNs) have garnered significant
research interest, spanning various applications including node
classification [1], [4], [24], [25], graph clustering [26]-[29],
and graph classification [30]-[34]. Most earlier efforts focus
on spectral-based GNNs, which define graph convolution
based on spectral graph theory [35], and many recent works
move to the spatial-based GNNs which aggregate and trans-
form local information via message-passing mechanism [36].
Despite the achievements in learning effective representations,
GNNss fail to recognize newly emerging classes, while our
proposed GraphGCR imposes desired properties on the learned
representations to transfer semantic knowledge from the seen
classes to the unseen classes.

B. Zero-shot Learning

Drawing inspiration from the human cognitive ability to
generalize knowledge from known entities to novel concepts
based on semantic descriptions and past recognition experi-
ences, another relevant area of research is zero-shot learning
(ZSL). ZSL aims to recognize new classes by transferring
semantic knowledge from known classes [9]. Early ZSL
approaches focused on establishing relationships between fea-
ture representations and corresponding class descriptions in
a shared embedding space, enabling the transfer of semantic
representations from seen to unseen classes [10], [37]-[40].
More recent studies have explored generative-based methods
to synthesize features of unseen classes [11], [12], [14], [41]
and focused on local region semantic mining [16], [17]. For
example, AREN [16] integrated attentive region embedding
and attentive compressed second-order embedding to effec-
tively capture both local and global semantic information
from images. RGEN [17] incorporated region-based relation
reasoning through a graph convolutional network, effectively
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modeling relationships between local image regions to im-
prove semantic transfer and classification accuracy for unseen
classes. Moreover, compared to traditional approaches such as
word embedding methods and convolutional neural networks,
pre-trained models like BERT [42], GPT-3 [43], and CLIP [44]
leverage unsupervised or self-supervised learning on large-
scale data to better capture semantic information, thereby
demonstrating superior generalization capabilities when han-
dling new classes. However, these methods struggle to adapt
effectively to graph zero-shot learning with complex graph
structures. This challenge arises from the inherent differ-
ences between traditional text or image data and graph data,
which is characterized by non-Euclidean structures, intricate
topological relationships, and varying levels of homophily
or heterophily. Effectively utilizing graph structural informa-
tion during training and guiding the learning process remain
challenging issues. Our GraphGCR effectively integrates the
topological structure properties of graphs to transfer class
semantic knowledge from seen classes to unseen classes.

C. Contrastive Learning

Another closely related research area is that of contrastive
learning (CL), which has recently aroused widespread interest
and is proven to be the most dominant component in self-
supervised learning. CL is built based on the task of instance
discrimination [45] and its underlying concept is to explicitly
compare pairs of sample embeddings to push away embed-
dings from different samples while pulling together those from
augmentations of the same sample. Recent empirical works
have successfully leveraged unlabeled data to learn effective
feature representations that are broadly useful in downstream
tasks [21], [46]-[52].

There are also some recent works trying to understand
the CL [53]-[55]. They systematically analyze the behavior
of contrastive learning and theoretically study the essence
of its effectiveness. Different from the above works, our
GraphGCR steps further and explores graph zero-shot learning
from the perspective of uniformity and alignment, and further
introduces a class generator to enhance model generalizability.

III. PROBLEM DEFINITION & PRELIMINARIES

Notations. Let G = {V,£,X} be an undirected graph con-
sisting of N nodes, where ¥V = {v1,---,un} is the set of
nodes, £ C V x V is the set of edges, and X € RN*ds
is the node feature matrix. The adjacency matrix of the
graph is denoted by A € {0,1}V*N where A4;; = 1 if
an edge (v;,v;) exists in &£, and A;; = 0 otherwise. The
class set is denoted as C, and S € RICI*d represents the
class semantic description (CSD) matrix for all classes [19],
where | - | denotes the cardinality of a set and d. is the
dimension of the CSD. The CSD should be expressive enough
to reflect the intricate relationships among the classes. This
matrix can be obtained using Word2vec [56] from associated
textual sources. Alternatively, pre-trained models like BERT
can be used to generate the CSD, providing more accurate
semantic information. In this paper, Word2vec is used to save
the computational cost.

iii

Graph Zero-shot Learning. Assume that the class set C is
divided into seen class set C; = {c1,...,¢|c,|} and unseen
class set C,, = {cjc,|+1,- - Clc,|+|c.|}» Which satisfy Cs N
Cy = 0 and Cs UC, = C. In graph zero-shot learning, the
classes of the labeled nodes only come from the seen class
set Cs, while those of the unlabeled nodes only come from
the unseen class set C,,. All the node features and seen node
labels can participate in training. The target of the task is to
recognize the class labels of the unlabeled testing nodes from
the unseen class set C,,.

Graph Convolutional Network (GCN). GCN [1] is a popular
type of GNN and can be interpreted as a message-passing
network [36], which encodes attributive and structural infor-
mation into node representations by aggregating the informa-
tion of the neighbors and propagating it to the next layer.
For example, the update process of a two-layer GCN can be
formalized as

H=5ASAXWW®R) A=D3AD:* ()

where H~ € RN*d j5 the embedding~ matrix of nodes, A=
A + 1, D is the degree matrix of A, §(-) is the activation
function, and W(l), W) are the trainable weight matrices.

Graph Contrastive Learning (GCL). Inspired by noise
contrastive estimation [57], GCL recently revitalizes and has
facilitated significant advances in self-supervised learning on
graphs [51]. The basic objective of GCL is to maximize
the agreement between the semantics-invariant positive aug-
mentations of the nodes in the graph and minimize the
correlation of the negative node pairs under augmentation.
Specifically, given two augmented graph views {X*, A'} and
{X?2, A?} followed by a GNN encoder via Eq. (1), we map
the obtained embeddings into a shared space by a projection
head (e.g., a multi-layer perceptron, MLP), yielding z} and
z?, i =1,..., N, which formulates the contrastive loss as

sim(z},22)/7

N &
L=-— g log
N sim(z},z!) /T N sim(z!,z2)/T’
i=1 Gl €T Y e

where 7 denotes the temperature parameter, sim(zq,zs) is
the cosine similarity %, and || - || is the Lo-norm.
Further, [54] identified two key properties of the contrastive
loss, i.e., (i) uniformity of the induced distribution of the
normalized features on the hypersphere, (ii) the alignment
of features from positive pairs, which can simultaneously
preserve maximal information of the data and assign similar
features to similar samples. [54] also asymptotically proved
that the contrastive loss optimizes these two properties. In this
paper, we leverage graph contrastive learning to assist with
graph zero-shot learning.

IV. METHODOLOGY
A. Overview

In this section, we introduce our approach called GraphGCR
for graph zero-shot learning as shown in Figure 1. The
main purpose of GraphGCR is to learn discriminative node
representations by exploring the relationship of all classes
and achieving uniformity and alignment between the node
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Fig. 1: Tllustration of the proposed framework GraphGCR.

features and class semantics under the homophily assumption
on graphs, such that the trained model can generalize well
to newly emerging classes. Specifically, GraphGCR draws
support from the supervised contrastive learning paradigm
[23] to encourage the semantic embeddings from different
seen classes to be distributed uniformly as well as realize
the alignment between the node features and class semantics.
Further, we synthesize features for unseen classes by our
proposed class generator to improve model generalization,
which enhances the diversity of the class augmentation by
conducting embedding propagation and interpolation.

B. Node-Class Uniformity and Alignment Learning

In graph zero-shot learning, exploring the relationships
among the classes and nodes in a unified framework for high-
accuracy prediction is essential [20]. We attempt to leverage
GNNs to capture both feature and relation information from
node- and class-wise views. Specifically, based on the CSD
matrix S, we construct the adjacency matrix A€ of the classes
by the k-nearest neighbor graph. With the two tuples {X, A}
and {S, A°} followed by a projection head to project X, S
to the same dimension, we feed them into a three-layer GCN
to learn the node- and class-wise latent representations Z =
(z1,...,2y)" € RN*? and O = (oy,.. o' € RICIxd
respectively, where d’ is the dimension of representations.

Note that the representations of node features and class
semantics from the same class are naturally a pair of aug-
mented forms that carry the same meaning, our approach
hence leverages supervised contrastive learning [23] as a whole
to formulate our framework in a uniform and aligned manner.
To well adapt it to the graph domains and fully explore
graph topology, we propose to adopt graph diffusion [58]
to acquire richer global structural information. Formally, the
graph diffusion matrix F is defined as

F=pI-(1-nA)", 2)

which adopts the personalized PageRank [59] with 7 € (0,1)
being the teleport probability and A is the normalized adja-

cency matrix defined in Eq. (1). The values in the ¢-th row of
F can reflect the influence between node v; and all the other
nodes. We treat the nodes with topk largest scores in the i-th
row of F' as the affinity nodes of v; and they should possess
similar semantic information to v;. Moreover, the homophily
assumption states that similar nodes typically should be close
to each other and belong to the same class, these affinity nodes
thus are expected to share the same class label. Then we insert
the structural information upon the homophily assumption into
the supervised contrastive learning to achieve both self- and
affinity-alignment between nodes and classes. Accordingly, we
formulate the supervised contrastive loss as

esim(za,oyi)/T

Z log Zjec esim(zq,0;) /T

a€A(i) 3)
with Tl‘"}l‘f = log Z sim(zq,05)/7 |,
J€C\{yi}

T;l;g" = —sim(zq,0y,)/7, h(z) =log(l +€*),
where y; is the ground-truth label of node v;, A(i) is the
affinity node set of node v; building on the explanation
provided after Eq. (2) that always contains v;, and 7 is a scalar
temperature hyper-parameter. Under the zero-shot setting, to
make the participant class semantics align with at least one
node representation, the defined loss in Eq. (3) only considers
the seen class C,. Inspired by [54], £° is decomposed into
two regularization terms, ie., class uniformity (Ti“,‘gjf) and
feature alignment (Tiig"). Let {Z, = z./||zd|l,a € A(i)}
and {0; = 0,/||0;||,j € Cs} be the normalized affinity node
representations and normalized class semantic representations
on the unit hypersphere, respectively. Then by theoretical
analysis, we prove the following result with finite samples.
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Theorem IV.1. By minimizing the loss L£° in Eq. (3) with
finite samples, {6, j € Cs} are pushed away from each other
to spread out over the latent space, and {z,,a € A(i)} of node
v; that include z; are pulled to their corresponding normalized
class semantic representation o,, for any i € {1,..., N}

The proof of Theorem IV.1 is presented in the Appendix.
Hence, minimizing £° encourages the seen class represen-
tations to be uniformly distributed in the semantic space and
also forces the pairs of positive augmentations (class semantics
and node features from the same class, as well as their affinity
nodes) to be mapped to nearby embeddings, thereby simultane-
ously achieving well-separated class semantic representations
and discriminative node representations with maximal infor-
mation preserving.

C. Feature Generation of Unseen Classes

Although uniformity and alignment are effectively achieved
for the seen classes and corresponding node features, those
for the unseen class semantics have not been fully explored,
which inevitably limits the model generalization ability. To
solve this crucial problem, we develop a class generator to
produce synthetic class semantic representations by embedding
propagation and interpolation. Then similar to Eq. (3), we
uniformize and align the synthetic class semantics and the
corresponding node features generated in the same way to
learn more generalized and discriminative node representations
for graph zero-shot learning.

To achieve the sharing of the synthesis way between class
and node representations, we first learn a set of representative
feature prototypes from the node representations Z, which
follows the paradigm in Eq. (3) and is supervised by

oSim(za,wy, ) /7

Z log Zjec esim(za,wj)/'r’ (4)

where {wi,...,wjc |} are the trainable feature prototypes
with the same number as the seen classes. Each prototype
should be relatively close to all nodes belonging to a certain
class as well as their affinity nodes in the latent space.
Meanwhile, they can be uniformly distributed under the con-
trastive learning framework. Further, depending on the idea
that unseen classes usually share semantics with several seen
classes, e.g., bioinformatics combines the characteristics of
biology and computer science in the citation network, we
perform embedding propagation from seen class semantics and
feature prototypes. Specifically, we calculate the similarities
for all pairs in the semantic and prototype embeddings as
d; ; = sim(0;,0;) and dj ; = sim(w;, w;),4,j = 1,...,|Cs].
To effectively transfer knowledge from seen semantics and
features to emerging ones, we utilize a weighted linear
transformation to propagate new class semantics and feature
prototypes in a synchronized manner,

IC| C.|

= E :w%]O]’ Wi = E :wmwj,

j=1 j=1

where the weight w; ; plays a crucial role in governing the
influence of existing class information (o; and w;) on the
updated representations (o; and w’), defined as

ol(ds 4l ) /217"

Wii = ST AT

Such an operation makes the newly synthesized features fall
around the original ones but not too close to them, since the
representation distributions for the original seen classes and
feature prototypes are roughly uniformly distributed through
minimizing Eq. (3) and Eq. (4), and the negative correla-
tion between the defined weight and similarity ensures the
extension of the novel classes and features. As such, the
correlative relationship across different classes is established
and the cross-class transferability can be well enhanced, which
can alleviate the domain-shift issue [22]. In addition, to
increase the diversity of the synthesized features, we conduct
embedding interpolation between the synthesized feature o
(resp. w}) and the original one o; (resp. w;), formulated as

where « is a balance parameter following the uniform distribu-
tion U0, 1]. Finally, based on the generated node- and class-
wise features {of, o”}‘cl‘ and {w;, w”}z 1, we also inject
the properties of uniformity and alignment by minimizing the
following contrastive loss

ICs | 51m(0 W) /T +651m(0 w7

;1g I|

which contributes to estabhshing the connection between the
unseen class semantics and node features, thereby promoting
the generalization ability of the proposed GraphGCR.

&)

51m(oi,wj)/‘r + €Slm(077 ,w_;/)/T]7

D. Joint Optimization for Graph Zero-shot Learning

To enhance graph zero-short learning, we leverage the
supervised contrastive learning framework to facilitate the
uniformity and alignment of seen class semantics and node
features as well as the synthesized unseen ones generated by
embedding propagation and interpolation.

Formally, we unite the supervised contrastive losses for seen
node-class pairs, node-prototype pairs, and newly synthesized
node-class pairs in Eq. (3), Eq. (4), and Eq. (5) to optimize
GraphGCR, i.e., the total loss is

L=1L%+eLl +nLf, (6)

where € and 7 are the balance hyper-parameters to adjust the
relative importance of each loss component. Furthermore, as
discussed earlier and supported by Theorem IV.1, this scheme
effectively mitigates the over-smoothing issue commonly ob-
served in GNN models. By minimizing £, it facilitates the
acquisition of well-separated class semantic representations
and discriminative node representations, thereby preventing
the learned representations from becoming indistinguishable.

When the model reaches convergence, following the align-
ment paradigm, we predict the class label g of the unlabeled
node from the unseen class set C,, by selecting the class whose
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Algorithm 1 The Optimization of GraphGCR

Input: Graph G = {V,&,X}; Class set C = C; UC,; Class
semantic description matrix S; Maximum iterations T}, 4.}
Output: Class assignments for unlabeled nodes from unseen
class set Cy;

1: Construct the class adjacency matrix A° by kNN;

2: Construct the affinity node set A(¢) from Eq. (2);

3: Initialize the trainable parameters in GCN and the feature

prototypes;

4: Sett = 0;

5: while ¢t < T,,,, do

6:  Update the node- and class-wise representations Z and
O by GCN encoder;

7. Generate the newly synthesized class semantics and
feature prototypes by embedding propagation and in-
terpolation;

8. Calculate the losses £°, £F, and £ in Eq. (3), Eq. (4),
and Eq. (5), respectively;

9:  Conduct backpropagation and update the whole network
in GraphGCR by minimizing £ in Eq. (6);

10:  Update the feature prototypes in Eq. (4);

11: Sett=1t+1;

2: end while

—

semantic representation has the maximum similarity with the
testing node, i.e.,

Y = argmax,cc. Sim(Zest, Oy ),

where sim(-, -) is the cosine similarity, and z.y and o, are the
learned representations from the GCN encoder for the testing
node and the unseen class. The detailed training procedure for
our proposed GraphGCR is outlined in Algorithm 1.

E. Computational Complexity Analysis

Given a graph dataset with N nodes and E edges,
and assume the dimensions of the used L-layer GCN are
di,...,dr. The time complexity of constructing the class
adjacent matrix by the k-d tree is O(|C|log|C|). Suppose
that the constructed class graph has F. edges. Then we
learn the representations by the GCN encoder in O((E +
E.) Ele d;d;—1). We perform embedding propagation and
interpolation in O(|C4|?dy) and the complexity of computing
the total loss is O(N|Cs|dtopk + |Cs|?dL). Therefore, the
total computational complexity of our proposed GraphGCR is
O((E + E.) Y5 | didi 1 + N|Cs|dLtopk).

V. EXPERIMENT
A. Experimental Setup

Datasets. Following [19]-[21], we perform extensive exper-
iments on three widely recognized citation datasets: Cora (7
classes), Citeseer (6 classes), and C-M10M (6 classes), where
each node corresponds a publication, and the edges represent
the citation relationships between two linked publications. To
ensure fairness in comparison, we utilize identical settings for
seen/unseen class splits as outlined in [19], i.e., the labels of

vi

TABLE I: The data split of three citation datasets.

Class Split 1 Class Split 1T

Dataset

[Train/Val/Test] [Train/Val/Test]
Cora [3/0/4] [2/2/3]
Citeseer [2/0/4] [2/2/2]
C-M10M [3/0/3] [2/2/2]

the same class only belong to one of the training set, validation
set, and test set; the test set must contain class labels that do
not appear in the training and validation sets; the number of
classes in each set is finally guaranteed to sum up to the total
number of classes of the data. The details of the split can be
found in Table I. Other allocation of the number of classes is
also feasible, as long as the aforementioned requirements are
met. Additionally, we employ two types of CSDs: TEXT-CSDs
(default) and LABEL-CSDs, which are generated by Bert-Tiny
as described in [19] providing different class semantics.

Baseline Methods. Our proposed GraphGCR is compared
against various advanced methods in zero-shot learning in-
cluding DAP and its variant DAP(CNN) [60], ESZSL [10],
ZS-GCN and its variant ZS-GCN(CNN) [61], WDVSc [37],
Hyperbolic-ZSL [62], AREN [16], and RGEN [17], which
were originally developed for vision domains. Furthermore,
we consider three recent methods specifically designed for
graph zero-shot learning: DGPN [19], DBiGCN [20] and
GraphCEN [21]. In addition, the RandomGuess is chosen as
the naive baseline, which randomly assigns unseen classes to
unlabeled nodes on the graph.

Implementation Details. We implement the proposed model
using PyTorch and conduct all experiments using an NVIDIA
GeForce RTX 3090. In all experiments, we use a three-
layer GCN as the backbone encoder and we train the model
from scratch by randomly initializing the network parame-
ters, without using any pretraining. For our GraphGCR, we
employ the grid search to tune the hyperparameters. The loss
hyperparameters {e,n} are set as {0.1, 1} for Cora, {0.01,0.5}
for Citeseer, {1, 1} for C-M10M, respectively. In addition, the
learning rate is selected from {1e-3, le-4, le-5}; the hidden
dimensions are selected from {32, 64, 128, 256}; the number
of neighbors k,, in kNN is chosen from {1, 2, ..., |C|-1}; the
number of affinity nodes topk is chosen from {1, 10, 50, 100,
200}. For evaluating the performance, we adopt accuracy on
the test set as the primary metric in our experiments.

B. Overall performance

In this section, we begin by comparing our GraphGCR
with state-of-the-art methods for graph zero-shot learning. As
outlined in Table II, our findings are summarized as follows:

e Our proposed GraphGCR consistently outperforms other

strong baselines across all three datasets in different class
split settings. Notably, GraphGCR achieves a remarkable
improvement of 9.19% on C-M10M dataset under class
split T and 4.37% on Citeseer dataset under class split
II compared to the closest competitor. This indicates
the superior model generalizability of our framework for
graph zero-shot learning.
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TABLE II: Comparison of the overall performance. The best
results are in boldface and the second-best is underlined.
‘Improve 1’ refers to the accuracy improvement rate of our
GraphGCR relative to first-best baseline.

Dataset | Cora  Citeseer C-M10M
RandomGuess 25.35 24.86 33.21
DAP 26.56 34.01 38.71
DAP(CNN) 27.80 30.45 32.97

=~  ESZSL 27.35 30.32 37.00
= ZS-GCN 25.73 28.62 37.89
& ZS-GCN(CNN) 16.01 21.18 36.44
2 WDVSc 30.62 23.46 38.12
8 Hyperbolic-ZSL 26.36 34.18 35.80
AREN 28.71 34.62 36.91
RGEN 31.29 35.89 38.45
DPGN 33.76 37.74 41.93
DBiGCN 45.08 38.57 41.11
GraphCEN 48.43 40.77 44.17
GraphGCR (Ours) 48.98 41.21 48.23
Improve 1 \ +1.14%  +1.08% +9.19%
RandomGuess 32.69 50.48 49.73
DAP 30.22 53.30 46.79
DAP(CNN) 29.83 50.07 46.29
= ESZSL 38.82 55.32 56.07
=2 ZS-GCN 29.53 52.22 55.28
& ZS-GCN(CNN) 33.20 49.27 51.37
w WDVSc 34.13 52.70 46.26
= Hyperbolic-ZSL 37.02 46.27 55.07
©  AREN 36.58 49.52 55.16
RGEN 40.37 52.63 57.33
DPGN 48.31 58.86 61.68
DBiGCN 46.95 58.37 66.12
GraphCEN 50.61 60.47 70.83
GraphGCR (Ours) 52.48 63.11 72.95
Improve | +3.69% +4.37%  +2.99%

e Zero-shot learning methods for visions generally ex-
hibit inferior performance compared with graph zero-shot
learning methods (DPGN, DBiGCN and GraphCEN).
This could be attributed to their limited ability to explore
the relational information among nodes and capture the
complex characteristics of graphs.

e Across all datasets, our GraphGCR surpasses existing
graph zero-shot learning methods (DPGN, DBiGCN and
GraphCEN) by a significant margin. This demonstrates
the excellent superiority of modeling uniformity and
alignment. Besides, it is beneficial to synthesize novel
node features and class semantics for unseen classes
to enhance generalization, further facilitating knowledge
transfer from seen classes to unseen classes.

Scalability on the large-scale dataset. To assess the scal-
ability of our approach, we test it on the large-scale ogbn-
arxiv dataset. We compare the performance of our method,
GraphGCR, against the latest baselines, DPGN, DBiGCN, and
GraphCEN. Table III shows that our GraphGCR consistently
outperforms these baselines, particularly in class split I. This
indicates the superior discriminative power and generalization
capabilities achieved through our learned desired representa-

TABLE III: The comparison (%) of DGPN, DBiGCN, Graph-
CEN, and our proposed GraphGCR on the large-scale ogbn-
arxiv dataset for zero-shot node classification.

\DGPN DBiGCN  GraphCEN  GraphGCR (Ours)

22.37 21.40 23.96 25.78
21.95 25.92 28.36 29.47

Class Split I
Class Split 1T

TABLE IV: Analysis of ablation study.

Model | Split | Cora Citeseer C-M10M
GraphGCR wio £° | |43 sl 7
GaphGCR wio £ | | 5117 @7 gse0
GraphGCR w/o L€ III 2332 28%2 171?342;
GraphGCR (Ours) 111 ;‘i;?ﬁ gjﬂ ;13:32

tions of uniformity and alignment, as well as our developed
class generator. These findings confirm that GraphGCR ef-
fectively learns effective and transferable representations and
demonstrates excellent scalability.

C. Ablation Study

In this part, we conduct an ablation study to verify the
importance of three crucial components in GraphGCR, with
the following contrast variants as follows:

o GraphGCR w/o £5: Our full model without supervised
contrastive loss for seen classes.

o GraphGCR w/o L£F: Our full model without supervised
contrastive loss for feature prototypes.

 GraphGCR w/o £: Our full model without supervised
contrastive loss for synthesized unseen classes.

The comparison results of different variants are presented
in Table IV. It is evident from the table that our complete
model, GraphGCR, achieves the highest performance across
all three datasets under different class split settings. As such,
it is necessary to build a joint framework to simultaneously
capture uniformity and alignment for seen and unseen classes.
In addition, we can see that different components play distinct
roles for different datasets. Taking class split I as an example,
on Cora dataset, GraphGCR w/o LG exhibits the worst re-
sults, indicating the significance of class generator. While on
Citeseer dataset, £° is the most important. This variation in
performance can be attributed to the inherent differences in the
properties of the datasets, which results in different focuses in
capturing information for our method. This further confirms
the importance of each component in our proposed method,
emphasizing that every component is indispensable.

Moreover, in Table V, we record the running time in
seconds for our model GraphGCR and the three variant models
under class split I. Under each variant, we omit the exclusive
operations associated with the removed loss during training.
Combining with Table IV, it can be observed that our model
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TABLE V: Runtime comparison (in seconds) of ablation study
under class split 1.

Model | Cora Citeseer  C-M10M
GraphGCR w/o £5 | 28.1883  53.4238 21.8016
GraphGCR w/o L7 | 29.1727  56.9088  21.5072
GraphGCR w/o L9 | 253496  51.7638 20.0701
GraphGCR (Ours) | 339869 644500 264212

Accuracy (%)
Accuracy (%)

(a) Cora
1 @ @
f g 400
’ 4753 =
2 375 5
450 & 51
5 350 5
42.5 g s 3
40.0 < U<
20 20
10
10 1 o 1IN
e oo 03
(c) Cora (d) Citeseer

Fig. 2: The performance comparisons w.r.t. different hyper-
parameters on Cora and Citeseer under class split I.

GraphGCR achieves better prediction performance with only
a slight increase in computational cost.

D. Sensitivity Analysis

We discuss the impacts of the hyper-parameters, i.e., the
number of neighbors k,, in kNN, the number of affinity nodes
topk, and balance weights (loss hyperparameters) ¢ and 7.

Effects of k,, and topk. As shown in Figures 2(a) and 2(b),
we can observe that on Cora dataset, when topk is fixed,
the performance initially improves and then declines with k,,
increasing, which indicates that class semantics in Cora exist
significant discrepancies, and forcing connections can blur the
distinctiveness. However, when k,, is fixed and topk increases
to 100, the result continues to improve, while a further increase
leads to a decline. This could be due to the introduction of
noise from selecting too many affinity nodes. On the other
hand, increasing k, is beneficial for Citeseer dataset as it
better captures the relationships among classes, while topk
has a relatively less sensitive impact on Citeseer.

Effects of ¢ and 7. As depicted in Figures 2(c) and 2(d),
it can be seen that on Cora dataset, when n is fixed and
relatively small, increasing € to some extent positively impacts
the model’s predictions, highlighting the importance of the

viii

feature prototype. But further increase of ¢ may have negative
consequences in some cases. Similarly, when € is fixed and
n 1is increased, the model performance also improves and
exhibits greater stability. This is consistent with the ablation
study, where removing L% results in the most significant
performance drop. However, on Citeseer dataset, the impact of
these parameters shows an opposite phenomenon. When both
n and € are small, the model achieves the best results. This
aligns with the ablation study and indicates that in Citeseer, £
is the dominant factor influencing performance. Excessive 7
and ¢ can overshadow the effect of £, leading to performance
degradation.

E. Discussion on Different CSDs

In our GraphGCR, we construct class adjacency matrix
A€ based on the CSD matrix S. Since different CSDs can
provide different semantic information for the class graph, the
model performance on graph zero-shot learning that heavily
relies on label semantics can be significantly influenced by
the chosen CSD. Hence, we analyze the impacts of two
types of CSDs [19], as shown in Table VI. From the table,
we observe that TEXT-CSDs typically outperform LABEL-
CSDs, which is consistent with previous researches [19], [20].
This highlights the better ability of natural language [63],
[64] to capture relational information among label semantics.
Moreover, regardless of the type of CSD used, our proposed
GraphGCR achieves the best performance, further demonstrat-
ing the superiority of modeling uniformity and alignment as
well as the generalizability of class generators.

F. Case Study

To validate the advantages of alignment and uniformity
captured by our GraphGCR, we compare it with the compet-
itive models DGPN and DBiGCN on the C-M10M dataset,
as shown in Figure 3. Figures 3(a) and 3(b) illustrate the
distribution of cosine distance between node features and
corresponding class semantics to demonstrate alignment on
the train and test sets, respectively. It is obvious that our
method achieves the smallest mean of the distance distribution,
indicating the best alignment. Additionally, DGPN exhibits
better alignment compared to DBiGCN on the train set, but
the opposite is observed on the test set. This is because
DGPN models the consistency between node features and
class semantics during the training but lacks the connection
between seen and unseen classes. On the other hand, DBiGCN
effectively captures the relationships among classes, leading
to better generalization. For uniformity, we utilize principal
component analysis and Gaussian kernel density estimation
to visualize the distribution of features on the unit circle in
Figures 3(c)-3(h). Taking Figure 3(c) as an example, it is
evident that our method exhibits higher uniformity across dif-
ferent locations on the unit circle, with concentrated intra-class
features and dispersed inter-class features, which demonstrates
the discriminability of the learned contrastive representation.

VI. CONCLUSION

This work develops a novel framework GraphGCR for graph
zero-shot learning, which explores the relationship between
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TABLE VI: Accuracy (%) of zero-shot node classification w.r.t. different CSDs.

Cora Citeseer C-M10M
TEXT-CSDs LABEL-CSDs Decline rate | TEXT-CSDs LABEL-CSDs Decline rate | TEXT-CSDs LABEL-CSDs Decline rate
DAP 26.56 25.34 -4.59% 34.01 30.01 -11.76% 38.71 32.67 -15.60%

—  ESZSL 27.35 25.79 -5.70% 30.32 28.52 -5.94% 37.00 35.02 -5.35%

= ZS-GCN 25.73 23.73 -71.77% 28.62 26.11 -8.77% 37.89 33.32 -12.06%

& WDVSc 30.62 18.73 -38.83% 23.46 19.70 -16.02% 38.12 30.82 -19.15%

% Hyperbolic-ZSL 26.36 25.47 -3.38% 34.18 21.04 -38.44% 35.80 34.49 -3.66%

5 DGPN 33.76 32.69 -3.17% 37.74 31.05 -17.73% 41.93 35.12 -16.24%
DBiGCN 45.08 32.89 -27.04% 38.57 34.18 -11.38% 41.11 37.54 -8.68%
GraphCEN 48.43 39.63 -18.07% 40.77 38.45 -5.69% 4417 38.68 -12.43%
GraphGCR (Ours) 48.98 40.05 -18.23% 41.21 39.14 -5.02% 48.23 40.70 -15.61%
350 350 —— 0,||* =2—2%] 6, € [0,4], intuitively, to minimize loss Eia,
zgg D ;(5)3 i the normalized representations of the affinity nodes of v; that

) > . .
2 200 2 500 belongs to class y; and the normalized class semantics of y;
g q:,) .. . align . .
2150 2150 should have a small Ly-norm to minimize 7; >, which aligns
100 F 100 the two terms on the unit hypersphere.
537 52 Let M = |C, \ {y;}|. For uniformity, we perform the
05 06 07 08 09 10 04 0.5 06 0.7 08 0.9 1.0 1.1 following discussion. First, we can derive that
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Fig. 3: Case study of alignment and uniformity.

seen and unseen classes, and captures the uniformity and
alignment of the learned representations to enhance the model
generalization ability. We first extend supervised contrastive
learning for seen classes to capture desired properties as
well as design a class generator to synthesize new features
for unseen classes. The experimental results on real-world
datasets demonstrate the superior performance of our method
GraphGCR. Despite its advantages, the design of GraphGCR
relies on the homophily assumption, which limits its effec-
tive applicability to heterogeneous graphs, where edges may
connect nodes of different types. In our future, we aim to ex-
pand our framework to heterogeneous graphs with generalized
graph zero-shot learning and combine advanced pre-training
strategies for better knowledge transfer.

VII. APPENDIX

Proof of Theorem IV.1. Denote the node-class contrastive
loss for any node v; as £5, = (T + T""), where T

i,a °

T and h(-) are defined in Eq. (3). With the fact that ||z, —

i,a

1
— e M~ Z]‘ecs\{yi} 4X;

<o~ TF Ljeco\(ui) |20 —0; 1|
+ D

JE€C\{wi}
4 .
e MT Xjecs\{yi} N

1 —4/T
M[/\je YT (1= X)€"

_ —4/T
:e_ﬁf ieco\tv) 170511 + eM Z Aj
7€Cs\{yi}
1 _ 4 )
Y do(1=N)—e W7 Lieca\tn M

J€C:s\{v:}

:e_ﬁ >jecs\{u} |1Z2a—0,|? +p674/7— +q— e—4p/T
<6_ﬁ Ejecs\{yi} |1Za—0;]|? +p674/'r +q

ey [‘12—176—4/7 R (/)
q

:e—ﬁ Y jeco\ vy [12a=54l17 + pe_4/T +q+(q— p)e_4/T
B 2q672/7'
Se_ﬁ E]GCS\{yi} Hi‘l_é’“z —+ 674/7— + 1-— 2672/77

3

where ‘~’ stands for equivalence, A; € [0,1] is set to satisfy
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= s 12/ — — —
—||za—0;||?/T = —4)\; /T, ZjGCS\{yi} Ni/M =p,p+q=1,
and the Jensen’s inequality is used to build the inequalities.
In the last line of the above derivation, all but the first term
are independent of the optimization variables. It implies that
. .. — — 2 .

maximizing Z jeco\{y:} |1Za — 0;]|7 can effectively guarantee
the minimization of the loss £7 ..

Taking a similar argument on the loss £°, with a sum-
mation layer over Efa with respect to all the nodes, i.e.,

N
L8 = Zi:l ﬁ ZaGA(i) Efa’

.. N — — 112
mizing > 71 > oca() 2ojec.\{y} |/Za — 04| can boost the
optimization of the loss £g. Moreover, we also obviously have

1 N o
e v DD DD DI

i=1 ac A(3) jeC:\{v:}

}Hiafﬁj\la

we can obtain that maxi-

> min

1€[1:N],a€A(3),j€C: \{v:
which implies that maximizing min; , ; ||z, — 0,||? can facil-
itate the maximization of . > > ||z, — 0;||*. As for the
objective maxps min, 4 ; ||Z, — 0,||*, it geometrically pushes
Z,’s and 0;’s as far apart from each other as possible to
ensure that they are spread out over the latent space. It is
consistent with the concept of the maximin design, a kind
of space-filling design with good uniformity in the domain of
experimental designs. Combining with the alignment property,
an ideal scenario is that for any ¢ € {1,..., N}, the affinity
node representations {Z,,a € A(7)} of node v; that include z;
are pulled to their corresponding class semantic representation
0y,, and for any j € C,, the minimal Ly-norm between 6; and
{06,/,5" € C,\{j}} is the same, which results in a uniform
distribution for normalized class semantic representations on
the unit hypersphere.
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