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A sampling scheme for estimating the prevalence of a
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aSchool of Statistics and Data Science, LPMC & KLMDASR, NanKai University, Tianjin, China; bDepartment of
Biostatistics, College of Public Health, University of NE Medical Center, Omaha, Nebraska, USA

ABSTRACT
The spread of COVID-19 makes it essential to investigate its prevalence. In
such investigation research, as far as we know, the widely-used sampling
methods didn’t use the information sufficiently about the numbers of the pre-
viously diagnosed cases, which provides a priori information about the true
numbers of infections. This motivates us to develop a new, two-stage sam-
pling method in this paper, which utilizes the information about the distribu-
tions of both population and diagnosed cases, to investigate the prevalence
more efficiently. The global likelihood sampling, a robust and efficient sampler
to draw samples from any probability density function, is used in our sampling
strategy, and thus, our new method can automatically adapt to the compli-
cated distributions of population and diagnosed cases. Moreover, the corre-
sponding estimating method is simple, which facilitates the practical
implementation. Some recommendations for practical implementation are
given. Finally, several simulations and a practical example verify its efficiency.
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1. Introduction

COVID-19 broke out at the end of 2019 and has become a global pandemic. All countries around
the world have been severely affected, such as the United States of America (USA), where the num-
bers of confirmed cases and deaths increased rapidly from March 2020 to April 2021 (Centers for
Disease Control and Prevention 2020). It is essential for the government and health institutions to
monitor COVID-19 and control the pandemic by making practical and reasonable plans.

Since some people infected by SARS-CoV-2 are asymptomatic (Sakurai et al. 2020), one main
difficulty with the pandemic is that the cumulative number of diagnosed cases cannot represent
the number of infections. Many countries have made efforts to investigate the prevalence of
COVID-19 (Anand et al. 2020; Stringhini et al. 2020; Poll�an et al. 2020; Xu et al. 2020; Havers
et al. 2020; Rosenberg et al. 2020; Sood et al. 2020; Ward et al. 2021); however, many of these
investigations (Stringhini et al. 2020; Xu et al. 2020; Havers et al. 2020; Sood et al. 2020) only
focused on one or several hotspot(s) instead of the whole country.

In addition, when investigating the prevalence nationwide, restricted by the costs, only a small
part of the whole population can be investigated, especially when the country has a broad terri-
tory area. Therefore, it is important to develop some appropriate sampling strategies. The use of
convenience samples (Stringhini et al. 2020; Xu et al. 2020; Havers et al. 2020; Rosenberg et al.
2020; Kissler et al. 2020) is not proper because they are prone to the selection bias, and thus,
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problematic. Some other literature work (Leong et al. 2021; Parenteau et al. 2021; Knudsen et al.
2021; Tian et al. 2021; Sartorius et al. 2021) drew samples from some representative databases—
for example, the medical insurance databases. This strategy can reduce the cost of the survey, but
the representativeness of such samples depends on the representativeness of the database.
Another popular sampling strategy used in the investigations of prevalence is the multi-stage
stratified sampling, or some variants of it. Some recent studies (Jia et al. 2020; Poll�an et al. 2020;
Ward et al. 2021; Nagashima et al. 2021; Ssentongo et al. 2021; Horton-French et al. 2021;
Mulenga et al. 2021; Li, Shan, and Teng 2021) have used these kinds of sampling methods.
Compared with the simple random sampling, the variance of the estimator obtained by the strati-
fied sampling is usually smaller. However, this method depends heavily on the construction of
the strata in which the inter-homogeneity is required, and sometimes a well-designed stratified
sampling strategy may lead to a very complex analysis procedure.

Intuitively, the distribution of the number of cumulative diagnosed cases provides priori informa-
tion about the true situation of infections, and, therefore, can help with the sampling survey to
improve the efficiency. However, none of the above research utilized this priori information suffi-
ciently. In this paper, we propose a new sampling strategy for estimating the total number of infec-
tions nationwide. The main feature of this method is that it can flexibly and efficiently utilize the
information about the distributions of both population and diagnosed cases. Compared with the
stratified multi-stage sampling, our method is more flexible to adapt to various complicated distribu-
tions of population and diagnosed cases. The implementation and the corresponding estimating
methods of this sampling strategy are also easier. There are two stages in the sampling strategy: first,
determining the sampling positions according to some probability density, and then sampling from
these positions. The main focus of this paper is on the first stage, in which the probability density
may be multimodal and complicated. In this situation, some well-known methods to sample from a
general probability density function, including the Markov Chain Monte Carlo (MCMC) method,
e.g. Metropolis-Hastings (MH) algorithm (Hastings 1970), and the sampling/importance resampling
(SIR) method (Rubin 1987), as well as its variants (P�erez et al. 2005; Ning and Tao 2020), may have
a bad performance. The reason is that those methods can’t adapt to various kinds of sampling den-
sities (the MCMC method is easy to get stuck at some peak of the density function when the sam-
pling density is multimodal, and the performance of the SIR depends heavily on the choice of the
proposal distribution and the quality of the initial samples from the proposal distribution). To over-
come these problems, Wang et al. (2015) proposed a new method, called the global likelihood sam-
pling (GLS), and Yi et al. (2022) showed its theoretical properties. We will use GLS in the first stage
of our proposed sampling strategy. As for the second stage, any advanced sampling strategy can be
used; for simplicity, we only consider the simple random sampling method in this paper.

The rest of this paper is organized as follows. In Sec. 2, we describe the problem and propose
the basic approach. The GLS algorithm is also described in this section. In Sec. 3, the optimal set-
tings of our sampling strategy are derived. The complete sampling strategy and the corresponding
estimating method are given in Sec. 4, as well as some suggestions for practical implementation.
Some numerical simulations are conducted in Sec. 5, in order to find the robust setting of a par-
ameter in our method, and to show the efficiency of our method. To further explain our method,
a practical example is presented in Sec. 6. Finally, Sec. 7 concludes this paper. Some additional
remarks, details, proofs and simulations are provided in the Supplementary Materials.

2. Preliminaries

2.1. Basic approach

Suppose a pandemic is spreading over a region R � R
2, and we want to know its total prevalence

over the region R: The total population of this region, the cumulative number of diagnosed cases,
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and the cumulative number of real infections are denoted by Npop, Ndiag and Ninf , respectively.
The distribution of population is seldom uniform, and this can be described by a non-negative
function fpop over R satisfying

Ð
RfpopðxÞ dx ¼ Npop, that is, fpopðxÞ is approximately the number

of population per unit area around x 2 R: Here after, we call fpop the “density of population”.
Similarly, there are corresponding densities of diagnosed cases and infections in R, denoted by
fdiag and finf , respectively, satisfying

Ð
RfdiagðxÞ dx ¼ Ndiag and

Ð
RfinfðxÞ dx ¼ Ninf , respectively.

The information about the population, Npop and fpop, and that about the diagnosed cases, Ndiag

and fdiag, are usually known (see Sec. 4 for more details), but the information about the real infec-
tions, Ninf and finf , is hard to get, which is just what we are interested in. Since the total preva-
lence is Ninf=Npop, estimating the total prevalence is equivalent to estimating the total number of
infections Ninf : Therefore, for convenience, our goal is to estimate Ninf by a sampling survey. We
develop a two-stage sampling method in this subsection, and the optimal choices of the adjustable
parameters in our method are discussed in Sec. 3.

Denote Zk :¼ 1, :::, kf g for any k 2 N
þ where N

þ is the set of all positive integers. Since Ninf

is the integral of finf on R, a popular way to approximate Ninf is the Monte Carlo method. Here
we adopt the importance sampling technique (Lemieux 2009, Section 4.5), which is helpful in
reducing the variance. Let u be a probability density function on R and n1, :::, nr be r independ-
ent and identically distributed (i:i:d:) samples from u, then the sample mean
r�1

Pr
i¼1finfðniÞ=uðniÞ is an unbiased estimator of Ninf : The variance of this estimator depends on

the choice of u (Lemieux 2009, Section 4.5). Hereafter, we call u the sampling density and call
n1, :::, nr the sampling positions. Since finf is unknown, we have to estimate the values of finf at
n1, :::, nr: Therefore, our sampling survey consists of two stages: first, determining the sampling
positions n1, :::, nr; second, selecting the samples, i.e. the people who will receive the tests, at each
sampling position to estimate the values of finf there. The main focus of this paper is on the first
stage, and the simple random sampling is adopted in the second stage. Other advanced sampling
methods can also be used in the second stage, which is problem-dependent.

Suppose the desired total sample size is n, and the sample size at ni is 1ðniÞ for i 2 Zr, where
1 is a positive function on R such thatð

R

1ðxÞuðxÞ dx ¼ n
r
: (1)

The constraint (1) provides that the expectation of the total sample size
Pr

i¼11ðniÞ is n. It is
known that n and r affect 1, and we consider n and r as the hidden parameters of 1. Apparently,
n=r serves as a multiplicative factor in 1. Hereafter, we call 1 the allocation function of the sample
sizes. Then, for each i 2 Zr, let’s derive an estimator of finfðniÞ: For simplicity, assume 1ðniÞ, the
sample size at ni, is an integer; otherwise, some rounding procedure is needed, but the corre-
sponding results still hold approximately, as long as 1ðniÞ is not too small. Given the sampling
position ni, in the second stage, 1ðniÞ sample from ni are tested, and denote the number of infec-
tions in the 1ðniÞ samples by si. Intuitively, one person’s possibility of infection is associated with
the infection status of others in that person’s household/neighborhood/community. This correl-
ation can be characterized by the local prevalence at ni, i.e. qinfðniÞ :¼ finfðniÞ=fpopðniÞ: Moreover,
1ðniÞ is usually very small compared to the population around ni: Hence, we can consider,
approximately, that si j ni � Bið1ðniÞ,qinfðniÞÞ, where ‘Bi’ represents the binomial distribution. An
unbiased estimator of finfðniÞ (conditional on ni) is

f̂infðniÞ :¼ fpopðniÞ �
si

1ðniÞ
, (2)
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with its variance being

Var f̂infðniÞ j ni
h i

¼ finfðniÞ fpopðniÞ � finfðniÞ
� �

1ðniÞ
: (3)

Combining the results of the two stages, we obtain an unbiased estimator of the total number
of infections Ninf ,

N̂inf :¼ 1
r

Xr

i¼1

f̂infðniÞ
uðniÞ

: (4)

The unbiasedness of N̂inf can be easily verified using the law of total expectation as follows:

EðN̂infÞ ¼ E
f̂infðn1Þ
uðn1Þ

" #
¼ E E

f̂infðn1Þ
uðn1Þ

����n1
" #( )

¼ E
finfðn1Þ
uðn1Þ

� �
¼

ð
R

finfðxÞ
uðxÞ � uðxÞ dx ¼ Ninf : (5)

Similarly, we can obtain its variance

VarðN̂infÞ ¼ 1
r

Var
finfðn1Þ
uðn1Þ

� �
þ E

finfðn1Þ fpopðn1Þ � finfðn1Þ
� �
1ðn1Þ uðn1Þ½ �2

" #( )
¼ 1

r
� v0ðN̂infÞ þ v1ðN̂infÞ
� �

: (6)

By the central limit theorem,

N̂inf � Ninfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN̂infÞ

q !d Nð0, 1Þ as r ! þ1, (7)

where ‘!d ’ means the convergence in distribution, and Nð0, 1Þ is the standard normal distribution.
Based on (7), we can construct the approximate confidence intervals for Ninf when r is large
enough. It is hinted by Supplementary Material S4.3 that the least r required for well approximat-
ing this asymptotic distribution can be very small, which is completely achievable in practice. The

estimator N̂inf in (4) can also be considered based on a kernel estimator of finf ; see
Supplementary Material S1.

2.2. Global Likelihood sampling

The sampling strategy introduced in Sec. 2.1 involves sampling from a bi-variate probability dens-
ity function u: Since the form of u can be various, multimodal and complicated, the extraction
of n1, :::, nr is not easy, and some well-known methods, e.g. MCMC and SIR, may be not suitable.
Instead, we adopt the GLS algorithm, which applies to the multimodal and complicated cases, to
generate the r sampling positions. Detailed discussion can refer to Zhou et al. (2021). Algorithm
1 describes the GLS method for generating i:i:d: samples n1, :::, nr from u: The GLS used here is
simplified compared to the original one in Wang et al. (2015).

In the inputs of Algorithm 1, the kernel ~u is an arbitrary positive constant multiple of the

desired sampling density u: The uniform design D is a set of M points scattered evenly in R ¼
½0, 1�2; refer to Fang et al. (2018) for more about uniform designs. Intuitively, the better the uni-

formity of D, the better PðiÞ approximates u for each i 2 Zr, and so the better the quality of
each sample ni: Since the generated n1, :::, nr are i:i:d:, the setting of M is not related to the set-
ting of r. Therefore, we should take a large enough M, say 100 or more, to assure that the empir-
ical distribution of n1, :::, nr approximates u well.

There are some additional remarks about the region R and the uniform design D in
Algorithm 1 in Supplementary Material S2.
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Algorithm 1: GLS algorithm

Let the smallest rectangle containing R be R � R
2; without loss of generality, sup-

pose R ¼ ½0, 1�2:
Input: (i) r: the number of samples from the sampling density; (ii) ~u : the kernel of the
desired sampling density u; (iii) D ¼ qj : j 2 ZM

� 	
: a uniform design on R ¼ ½0, 1�2:

Step 1. Loop. Repeat Steps 2 to 4 for i ¼ 1, :::, r:

Step 2. Random shift. Generate dðiÞ � UðRÞ and let DðiÞ ¼ qj � dðiÞ : j 2 ZM

n o
¼ D� dðiÞ,

where the operator � means the addition modulo 1, i.e. if dðiÞ ¼ ðdðiÞ1 , dðiÞ2 Þ, qj ¼ ðqj1, qj2Þ and

qj � dðiÞ ¼ ðqðiÞj1 , qðiÞj2 Þ, then for k 2 1, 2f g, qðiÞjk ¼ ðqjk þ dðiÞ1 Þ � floorðqjk þ dðiÞ1 Þ, where floorðtÞ is

the greatest integer no more than t.
Step 3. Likelihood. For each x 2 DðiÞ, let wðiÞðxÞ ¼ ~uðxÞ=Py2DðiÞ ~uðyÞ, where ~uðxÞ ¼ 0 for x 2
R nR: Then PðiÞ ¼ ðx,wðiÞðxÞÞ : x 2 DðiÞ� 	

is a discrete distribution on DðiÞ:
Step 4. Sampling. Generate ni in DðiÞ from the discrete distribution PðiÞ:
Output: r i:i:d: samples from u : n1, :::, nr:

3. Optimal settings of the parameters

In the two-stage sampling strategy introduced in Sec. 2.1, there are three adjustable parameters:
the sampling density u, the allocation function of the sample sizes 1, and the number of sampling
positions r. From (5), (6) and (7), these three parameters do not affect the unbiasedness of N̂inf ,
but do affect its variance and distribution. In this section, we discuss the optimal settings of these
parameters, where ‘optimal’ means to minimize the variance of N̂inf :

First, we derive the theoretical minimum variance of N̂inf as follows.

Proposition 3.1. For VarðN̂infÞ in (6), we have:

i. The term v1ðN̂inf Þ=r does not depend on r.

ii. Let ~f :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
finfðfpop � finfÞ

p
, and jðu2=~f Þ :¼ inf uðxÞ½ �2=~f ðxÞ : x 2 suppðuÞ

n o
, where suppðuÞ,

the support set of u, is the closure of x : x 2 R and uðxÞ > 0
� 	

. For any given r 2 N
þ and

u satisfying jðu2=~f Þ > 0, v1ðN̂infÞ=r is minimized subject to the constraint (1), when for any
x 2 R,

1ðxÞ ¼
~f ðxÞ=uðxÞ
r
Ð
R
~f ðyÞ dy

� n: (8)

The minimum of v1ðN̂infÞ=r is
Ð
R
~f ðxÞ dx

h i2
=n:

iii. When u / finf , v0ðN̂infÞ ¼ 0:

iv. Assume jðf 2inf=~f Þ > 0, then VarðN̂infÞ is minimized subject to the constraints (1) and

jðu2=~f Þ > 0, when r 2 N
þ is arbitrary, u / finf , and 1 is set as (8). The minimum of

VarðN̂infÞ is
1
n

ð
R

~f ðxÞ dx
� �2

: (9)
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The proof of Proposition 3.1 is in Supplementary Material S3. Proposition 3.1 derives the optimal
settings of ðr,u, 1Þ, as well as the theoretical minimum value of VarðN̂infÞ: In (ii) and (iv), the

constraint jðu2=~f Þ > 0 is needed to guarantee the optimality of the solutions. Such constraint is
mild and can be easily satisfied, e.g. when is bounded and jðuÞ > 0: Even without this con-
straint, the solutions in (ii) and (iv) are still stationary points of the respective objective functions,
and they are definitely not maximizers. Also note that in the optimal settings that minimize
VarðN̂infÞ, r can be arbitrary, and it only affects 1 through a multiplicative factor 1=r in (8). That
means VarðN̂infÞ is not affected by the tradeoff between r (affecting the thoroughness of the
exploration of the region R) and the sample sizes at the sampling positions (affecting the local
sampling variances), provided u / finf : This result is verified by additional numerical simulations
in Supplementary Material S4.3.

However, the above exact optimal settings of u and 1 cannot be achieved in practice because
those optimal settings depend on finf , which is unknown, and is just what we want to estimate.
Instead, we need to find the nearly optimal settings of u and 1. We first consider the following
mechanism to determine an initial rough estimate of finf : If a pilot sampling survey is imple-
mented or some historical data are available, then we can take a kernel estimator like that in
Supplementary Material S1, based on the available data, to roughly estimate finf : Otherwise, with-
out any extra knowledge, the only information about finf is 06 fdiag 6 finf 6 fpop, which implies
that there exists a function c from R to ½0, 1� such that finf ¼ c � fpop þ ð1� cÞ � fdiag: It is impos-
sible to know the form of c in this case, since finding c is equivalent to finding finf : A simple but
reasonable way is to roughly estimate c by a constant function, i.e. to choose a proper constant
�c 2 ½0, 1�, and take

�finf :¼ �c � fpop þ ð1� �cÞ � fdiag (10)

as an initial rough estimate of finf : This estimation combines the information of both fpop and

fdiag, which can make our method efficient. With the estimator �finf , the nearly optimal setting of

u is �finf= �c � Npop þ ð1� �cÞ � Ndiag
� �

: As for 1, we can use �~f :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�finfðfpop � �finfÞ

q
to estimate ~f in

(8), but there remains an integral
Ð
R
~f ðyÞ dy to approximate. Since the form of ~f is generally

complicated, it is appropriate to approximate this integral using the Monte Carlo method. In fact,
since the r positions n1, :::, nr are i:i:d: samples from u, the sample mean

1
r
�
Xr

i¼1

�~f ðniÞ
uðniÞ

is an unbiased estimator of the integral
Ð
R
~f ðyÞ dy: Therefore, for each i 2 Zr, the nearly optimal

sample size at the sampling position ni, which is an approximation of the exact optimal 1ðniÞ, is

nni :¼
�~f ðniÞ=uðniÞXr

j¼1

�~f ðnjÞ=uðnjÞ
� n:

With the nearly optimal setting of u, it is simplified to

nni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpopðniÞ � �finfðniÞ
h i

=�finf ðniÞ
r

Xr

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpopðnjÞ � �finfðnjÞ
h i

=�finfðnjÞ
r � n: (11)
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The integral
Ð
R
~f ðyÞ dy can be estimated more accurately, for example, by using a larger set of

Monte Carlo samples rather than n1, :::, nrf g: However, we still recommend the aforementioned
approach for the following four reasons:

i. From the discussion in the next paragraph, r should be large, so this estimator is plausible;

ii. Even if the integral
Ð
R
~f ðyÞ dy in (8) is replaced by a biased one, say t � ÐR ~f ðyÞ dy where

t> 0, it is easy to check that one, say ausible;approach for the following four reasons:n=t
instead of n, i.e., under the constraint (1) in the right-hand side of which n is replaced by
n=t: Therefore, this integral only controls the expectation of the total sample size, and does
not affect the optimality of e that in Supplementary Material S1, based on the

iii. Most importantly, this approach guarantees
Pr

i¼1nni ¼ n, i.e., the total sample size is exactly
the desired value n, before rounding the sample sizes at those sampling positions to integers.
A deterministic total sample size is usually more desirable in practice, than a random total
sample size with expectation being n which is indicated by the constraint (1);

iv. It is simple.

However, rounding the sample sizes at those sampling positions to integers can make the total
sample size different from n, which also happens in the allocation of sample sizes in traditional
sampling techniques. If this matters, one can apply some more sophisticated rounding methods
to maintain the total sample size equaling n: for example, rounding nni to floorðnniÞ þ 1 if the

fractional part nni � floorðnniÞ is in the top n�Pr
j¼1floorðnnjÞ

h i
ones among the r fractional

parts, and rounding nni to floorðnniÞ otherwise.
Next, we consider the number of sampling positions r. Although Proposition 3.1(iv) says that

r can be arbitrary in the exact optimal settings, r indeed affects VarðN̂infÞ when the settings of u
and 1 are nearly optimal. By Proposition 3.1(i), r affects VarðN̂infÞ mainly through the term
v0ðN̂infÞ=r: Since v0ðN̂infÞ does not depend on r, r should be large in order to reduce the variance
when u is not exactly proportional to finf , as long as nni is not too small to estimate the value of
finf at ni for each i 2 Zr: By (7), a large r also helps to obtain a good approximate distribution of

N̂inf : The numerical simulations in Supplementary Material S4.3 show that larger r can notably
reduce the variance and improve the coverage rate of the confidence interval under the nearly
optimal settings. Note that in practice, larger r may also increase the cost and the difficulty of the
sampling survey, since more positions have to be sampled. These results are consistent with the
classical sampling theory (Cochran 1977).

In addition, the costs at different sampling positions may be different in practice, which can
be quantified by a cost function c over R: Then our goal is to find the appropriate parameters
which can minimize both of VarðN̂infÞ and the total cost. For example, the weighted sum of
VarðN̂infÞ and the total cost can be used as an optimality criterion, i.e. VarðN̂infÞ þ
cc
Ð
RcðxÞ1ðxÞuðxÞ dx where cc 2 ½0,þ1Þ reflects the importance of the total cost. For such cases,

an analysis similar to the above can be performed, but it may be difficult to derive the explicit
expressions. Instead, the numerical optimization algorithms can be considered to solve this prob-
lem, which is beyond the scope of this paper.

4. Sampling and estimating

Based on the discussion about the nearly optimal settings of the parameters in Sec. 3, we show
the complete sampling strategy and the estimating method in this section. Some suggestions for
the practical implementation are also given.
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The details of the two-stage sampling strategy are described in Algorithm 2, which combines
the basic approach in Sec. 2.1 with the GLS algorithm in Sec. 2.2.

Algorithm 2: Two-stage sampling strategy

Input: (i) �c : the constant in ½0, 1� to give a rough estimator of finf by (10); (ii) D: the uniform
design on ½0, 1�2 used in Algorithm 1; (iii) n: the total sample size; (iv) r: the number of sam-
pling positions.
Step 1. Rough estimate. Obtain �finf , an initial rough estimator of finf , by (10). The kernel of
the sampling density u is set to be �finf :
Step 2. Sampling positions. Generate r i:i:d: sampling positions n1, :::, nr in R from the sam-
pling density u by the GLS in Algorithm 1 with inputs ðr,�finf ,DÞ:
Step 3. Allocation of sample sizes. For each i 2 Zr, calculate roundðnniÞ, the sample size at
the sampling position ni, where nni is calculated by (11) and ‘round’ is the function rounding
a real number into the nearest integer.
Step 4. Test. For each i 2 Zr, select roundðnniÞ people at position ni by the simple random
sampling and then implement tests on them.

Next, we give some remarks about Algorithm 2 as follows.

i. About fpop and fdiag: These two density functions can usually be obtained or approximated
in practice. For example, we usually have the number of population in each administrative
district, and we can approximate fpop by a piecewise constant function whose value on each
administrative district is a constant equaling the ratio of the number of population in this
district and the area of this district. We can similarly obtain fdiag: In order to gather more
information, we should use as fine administrative division as possible. The kernel methods
like that in Supplementary Material S1 can also be applied to smooth the densities.

ii. About �c: It is difficult to theoretically optimize the setting of �c, but the numerical studies
will give some recommendations in Sec. 5.1.

iii. About n. In practice, the n is usually determined by both the requirement of precision and
the restriction of costs, thus VarðN̂infÞ should be roughly estimated before the implementa-
tion of the sampling strategy. This can be done by using (9), which can be approximated by

1
n

mðRÞ
M

X
x2D

�~f ðxÞ
" #2

where mðRÞ is the area of R, and D is the uniform design with M points used in
Algorithm 2. The n should be set such that the above estimator of VarðN̂infÞ is smaller than
some pre-defined threshold about the precision.

iv. About nni : As mentioned in Sec. 3, r should be as large as possible, provided that the cost
will not exceed the budget, and no nni is too small to estimate finfðniÞ: An additional way to
avoid small nni is to modify the calculation method of the sample sizes at those sampling
positions, i.e., the nni in Step 3 of Algorithm 2 as

nni :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpopðniÞ � �finfðniÞ
h i

=�finfðniÞ
r

Xr

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpopðnjÞ � �finfðnjÞ
h i

=�finfðnjÞ
r � ð1� gÞnþ 1

r
� gn, (12)

where g 2 ½0, 1� is a properly chosen constant. Since the allocation method of sample sizes
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in (11) is nearly optimal, g in (12) should not be too large. The proper setting of g should
make the minimum sample size among those sampling positions just achieve some pre-
defined threshold. Further, if nni is not very small compared to the population around the
sampling position ni, finite population corrections (Cochran 1977; Lohr 2019) should be
applied. For such case, expression (3) becomes

Var f̂infðniÞ j ni
h i

¼ 1� qSðniÞ½ � � finfðniÞ fpopðniÞ � finfðniÞ
� �

1ðniÞ
,

where qSðniÞ refers to the sampling fraction at ni and i 2 Zr, and v1ðN̂infÞ in (6) becomes

E 1� qSðn1Þ½ � � finfðn1Þ fpopðn1Þ � finfðn1Þ
� �
1ðn1Þ uðn1Þ½ �2

( )
:

v. About the sampling survey at each sampling position. For each i 2 Zr, in practice, the nni
samples come from not exactly ni, but a neighborhood of ni: For convenience, this neigh-
borhood can be chosen as some small district, like a city, village, or community, containing
ni or just close to ni: It won’t affect the property of this sampling strategy as long as the
diameter of the neighborhood is negligible compared to the whole region R: For example,
the samples at each ni can be drawn from the people whose current residences are within
the circle centered at ni with radius 10km: Some other popular sampling methods, such as
the stratified sampling, cluster sampling, multi-stage sampling and other techniques (Lohr
2019), can be used to estimate finfðniÞ more efficiently. The corresponding results can be
obtained similarly with suitable modifications.

Our main purpose is to estimate the cumulative total number of infections Ninf : With the test-
ing results obtained by the above sampling strategy, we can estimate Ninf by using (2) and (4).
The variance of the estimator can also be estimated by (6), and then an approximate confidence
interval (CI) can be constructed according to (7). This estimating procedure is discribed in detail
as follows.

Step 1. For i ¼ 1, :::, r, calculate f̂infðniÞ by (2) using the testing result si at ni and replacing

1ðniÞ by the actual sample size at ni, and calculate uðniÞ where u ¼ �finf=
�c � Npop þ ð1� �cÞ � Ndiag
� �

:

Step 2. Obtain the point estimator N̂inf of the total number of infections Ninf according to (4).
Step 3. According to (6), let

v̂0ðN̂inf Þ :¼ 1
r � 1

Xr

i¼1

f̂infðniÞ
uðniÞ

� N̂inf

" #2

,

v̂1ðN̂inf Þ :¼ 1
r

Xr

i¼1

1� qSðniÞ½ � �
f̂infðniÞ fpopðniÞ � f̂infðniÞ

h i
nni uðniÞ½ �2 ,

v̂ðN̂infÞ :¼ 1
r
� v̂0ðN̂infÞ þ v̂1ðN̂infÞ
� �

,

(13)

then v̂ðN̂infÞ is an estimator of VarðN̂infÞ:
Step 4. According to (7), an approximate 1� a CI of Ninf is

h
N̂inf � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ðN̂infÞ

q
, N̂inf þ

za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ðN̂infÞ

q i
, where za=2 is the upper a=2-quantile of Nð0, 1Þ:
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Hence, by the two-stage sampling strategy and the estimating method above, we can obtain the
estimator of Ninf , its estimated variance and approximate CI. Note that these estimators cannot be
improved by generating extra sampling positions from u other than n1, :::, nr, since we can only get

the estimator f̂inf at n1, :::, nr based on the testing results obtained in Step 4 of Algorithm 2. In prac-
tice, the settings of 1 and u are only nearly optimal, so VarðN̂inf Þ is different from its theoretic min-
imal value (9), and we don’t have to estimate (9) based on the sampling data. The complete
procedure is summarized in Figure 1. In the next two sections, we will show some numerical simula-
tions and a practical example to verify the validity of our proposed sampling strategy.

5. Numerical simulation

In Sec. 3 and Sec. 4, we discussed how to set the parameters in the two-stage sampling strategy,
except for the coefficient �c in (10). In this section, we first give a robust setting for �c in the mini-
max sense through some numerical simulations, when there is little information about the under-
lying true finf : Then we compare our proposed sampling strategy with some other popular
methods to verify the efficiency of our method.

5.1. Robust setting of �c

In the oracle situation, when the exact optimal settings of 1 and u discussed in Sec. 3 can be
achieved, the variance of N̂inf is minimized, denoted by VarðN̂inf j u / finfÞ: On the other hand,
when we do not know the true finf and have to use the initial rough estimator (10) to determine

the sample sizes and the sampling density, the variance of N̂inf , denoted by VarðN̂inf j u / �finfÞ,
depends on the quality of �finf , and thus depends on �c: Therefore, in order to measure the per-

formance of different settings of �finf or �c, we define the standardized standard deviation (SSD) as

SSDð�cÞ ¼ SSDð�finfÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN̂inf j u / �finfÞ
VarðN̂inf j u / finfÞ

s
:

Our goal is to find the setting of �c such that the maximum of SSD over all possible true finf ’s
is minimized at that �c:

In the simulations, the region R ¼ ½0, 1�2 is the unit square and it is divided into four equal-
sized sub-squares. Let the populations in them be 20, 40, 60 and 80, multiplied by 1� 104

Figure 1. The complete procedure for implementing the proposed sampling method.
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respectively, and the numbers of diagnosed cases in them be 6, 8, 4 and 2, multiplied by 1� 104

respectively. Dividing those numbers by 1/4 will obtain the corresponding densities in the sub-
squares. Following is the corresponding graph.

Populations ð�104Þ : 20 40
60 80

, Diagnosed cases ð�104Þ : 6 8
4 2

:

The total population Npop ¼ 200� 104 and the total number of diagnosed cases Ndiag ¼
20� 104: We set the size of the uniform design used in the GLS algorithm M¼ 210, the total
sample size n ¼ 1� 104 and the number of sampling positions r¼ 50. In different groups of sim-
ulations, the settings of finf will be different. For each setting of finf and �c, VarðN̂infÞ is calculated
using the sample variance of N̂inf over 200 independent simulations.

In the first series of simulations, Series E, assume the true density of the infections finf is a
convex combination of fpop and fdiag, i.e. finf ¼ cfpop þ ð1� cÞfdiag, where c 2 ½0, 1� is a constant.
Series E contains three groups of simulations, E1 to E3, whose settings are shown in Table 1, and
the corresponding results are given in Figure 2. For each setting of finf (or c) in Group E1, the
coefficient �c takes 19 different values, and the corresponding 19 values of SSDð�cÞ form a black
curve in Figure 2a. The robust setting of �c is the one that minimizes the maximum SSD among
the 19 settings of finf , i.e. the one that minimizes the red bold curve in Figure 2a, which is
marked out by a red circle. The other two subfigures are obtained similarly. The three subfigures
in Figure 2 present a similar phenomenon that in the domain of c, the maximum SSD is large
when �c is close to the bounds of the domain, while the maximum SSD is minimized when �c is
neither too large nor too small. Therefore, Figure 2 indicates that when a possible range of the
true value of c is available, the mid-point of that range may be a robust setting of �c:

In order to verify this conclusion, another series of simulations, Series R, is conducted. In this
series, the true density of the infections is more complex than that in Series E. For each i 2 Z4,
the density of infections in the i-th sub-square is finf ,i ¼ cifpop, iþ ð1� ciÞfdiag,i, where ci 2 ½0, 1�,
and fpop, i and fdiag,i are the densities of population and diagnosed cases in the i-th sub-square,
respectively. Series R also contains three groups of simulations, R1 to R3. The settings are shown
in Table 2, in which there are 20 independent settings for c1, :::, c4 in each group, and the corre-
sponding results are given in Figure 3. For example, in Group R1, each setting of finf is obtained

by generating c1, :::, c4 �i:i:d:U½0:02, 0:98�: Under each setting of finf , �c takes the 19 values in
0:05, 0:1, 0:15, :::, 0:9, 0:95f g one by one, and the corresponding values of SSDð�cÞ are calculated,
and they form a black curve in Figure 3a. The robust setting of �c is the one that minimizes the
maximum SSD, i.e. the one that minimizes the red bold curve in Figure 3a, which is marked out
by a red circle. The three subfigures in Figure 3 seem more tanglesome than those in Figure 2,
which is caused by the complex setting of finf in Series R. However, the phenomenon presented
in Figure 3 is similar to that in Figure 2, i.e. in each subfigure, the red bold curve becomes high
when �c is near the end of the domain of the ci’s, but becomes low when �c is around the mid-
point of that domain. It indicates again that the mid-point of the possible range of ci’s is a robust
setting of �c: Some additional simulations in Supplementary Material S4.1 also present the similar
phenomenon clearly. Therefore, according to the above simulations under different settings of c,
when a possible range of the value of c is available, we should set �c around the mid-point of that
range, which is robust in the sense that the maximum value of SSD over all possible settings of
finf would not be very large.

Table 1. Settings of finf and �c in the simulations in Series E.

Group E1 Group E2 Group E3

c 0:05, 0:1, :::, 0:9, 0:95f g 0:05, 0:1, :::, 0:45, 0:5f g 0:5, 0:55, :::, 0:9, 0:95f g
�c 0:05, 0:1, :::, 0:9, 0:95f g 0:05, 0:1, :::, 0:45, 0:5f g 0:5, 0:55, :::, 0:9, 0:95f g
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5.2. Comparisons

In this subsection, we show some comparisons for the GLS against other popular methods,
including the SIR, MH and the stratified sampling. In this simulation, the region R ¼ ½0, 1�2 is
divided into 16 equal-sized sub-squares (which is similar to the previous subsection) within each
of which the density of the population is uniform, while the densities of the diagnosed cases and
infections are proportional to a normal distribution. In each of the 16 sub-squares, the population
is fixed, but the numbers of diagnosed cases and infections are generated randomly. Please refer
to Supplementary Material S4.2 for more details about the settings. As for the sampling methods,
we use the same sampling strategy in Algorithm 2, except for the sampler in Step 2. In our pro-
posed method, the size of the uniform design used in the GLS M¼ 210. The proposal distribu-
tions in the SIR and MH samplers are set as the uniform distribution on R ¼ ½0, 1�2, and the
normal distribution with covariance matrix equal to 1=16 � I2, respectively. In the three methods
GLS, SIR and MH, the number of sampling positions r¼ 16, and the value of �c is set 0 so that
u / fdiag: In the stratified sampling, the strata are the 16 sub-squares and the Neyman allocation
is used to determine the sample sizes in each stratum. The total population Npop ¼ 8000� 104

and the total sample size n ¼ 1� 104:
We use the following three criteria to compare their performances:

Figure 2. Results of the simulations in Series E: curves of SSD against �c:

Table 2. Settings of finf and �c in the simulations in Series R.

Group R1 Group R2 Group R3

ci’s ½0:02, 0:98� ½0:02, 0:53� ½0:47, 0:98�
�c 0:05, 0:1, :::, 0:9, 0:95f g 0:05, 0:1, :::, 0:45, 0:5f g 0:5, 0:55, :::, 0:9, 0:95f g

Figure 3. Results of the simulations in Series R: curves of SSD against �c:
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i. Relative bias: the ratio of the bias of N̂inf to the true value of Ninf ;
ii. Standardized standard deviation: the ratio of the standard deviation of the estimator of Ninf ,

obtained by a particular method, to that obtained by our method with the exact optimal set-
tings, which is similar to that in Sec. 5.1;

iii. Coverage rate of CI: the coverage rate of the approximate 95% CI.

We use 100 different random settings of finf and fdiag: Under each of the 100 settings, for each
method, the values of these three criteria are calculated through 200 independent simulations.
The results are presented in Figure 4. The unbiasedness of the estimators of Ninf obtained by
these four methods is verified through Figure 4a. From Figure 4b, we can find that our method
has the smallest SSD, i.e. the minimum variance of the estimator of Ninf : The main reasons are
that the performance of the SIR sampler depends heavily on the quality of the initial samples
from the proposal distribution, that the MH sampler is easy to get stuck at some peak of the
density function, and that the stratified sampling method does not utilize the information about
the population and the diagnosed cases sufficiently. From Figure 4c, we can also find that our
method has the highest coverage rate of the approximate 95% CI of Ninf : Therefore, we can con-
clude that our method is efficient, in the sense that its estimator of Ninf is unbiased, with a small
variance and a high coverage rate of the CI.

6. A Practical example

To further illustrate the two-stage sampling strategy, an example based on the situation of
COVID-19 in the USA is presented in this section. The ‘USA’ mentioned in this section refers to
the 50 states of the USA, as well as the District of Columbia, excluding other territories of the
USA. The cumulative numbers of diagnosed cases of the 51 administrative districts in the USA
can be obtained from the Centers for Disease Control and Prevention (2020). Assume that the
true densities of population fpop, diagnosed cases fdiag and infections finf are the densities of popu-
lation, diagnosed cases up to December 27th, 2020, and diagnosed cases up to April 22nd, 2021
in the USA, respectively. The corresponding densities are depicted in Figure 5a–c, with the unit
being km�2, and the specific data are shown in Supplementary Material S5. The total population
and the numbers of diagnosed cases and infections are Npop ¼ 331:319� 106, Ndiag ¼ 29:701�
106 and Ninf ¼ 31:467� 106, respectively. The total sample size n is set as 10000, which is quite
small compared to the total population of the USA. For comparison, we use both our method
and the classical stratified sampling to estimate the total number of infections Ninf : Based on the
settings of Npop and Ndiag, it is reasonable to assume that the values of the true c are in the range
½0, 0:1�, and we set �c ¼ 0:05 to obtain the initial rough estimation of finf : In our method, we
choose r¼ 250 and M¼ 210, as recommended in the previous sections, and the settings of the

Figure 4. Comparisons of different sampling methods.
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sampling density u and the allocation method of the sample sizes are nearly optimal. As for the
stratified sampling, the strata are defined as the 51 administrative districts, which is consistent
with the area partition when recoding the epidemic-related data; the Neyman allocation (Lohr
2019) was used. The details about the stratified sampling are described in Supplementary
Material S5.

The results of 200 rounds of independent simulations are shown in Table 3. Though the stand-
ard deviation of the estimator obtained by our proposed method is slightly smaller than that of
the stratified sampling, our method has higher coverage rate of CI. Note that in practice, the sam-
ples must be drawn from several selected sampling positions in each stratum. Due to this, the
stratified multi-stage sampling is often used (Poll�an et al. 2020), which can further increase the
variance of the estimator. For the stratified multi-stage sampling method, big efforts have to be

Figure 5. (a)–(c): The densities of population, diagnosed cases and infections; (d): the result of one round of simulation.

Table 3. Results of the comparison between our method and the stratified sampling.

Method Sample mean of N̂inf Sample standard deviation of N̂inf Coverage rate of CI

Our method 31:612� 106 0:995� 106 99.5%
Stratified sampling 31:691� 106 1:000� 106 95.0%
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made in order to adapt to a complicated distribution of population, and the variance may become
difficult to estimate. However, our method can automatically utilize the complicated information
about the distributions of population and diagnosed cases, while also maintaining the simplicity
in estimating Ninf and its variance.

Further, we show the result of one of the 200 rounds of simulations to explain our method. In
this round of simulation, the estimated number of infections N̂inf ¼ 29:70� 106, with the esti-

mated standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ðN̂infÞ

q
¼ 1:36� 106: The approximate 95% CI does cover the true

Ninf : The sampling positions are presented in Figure 5d, where the background is the true finf ,
and the circles represent the sampling positions, with their colors showing the estimated values of
finf in km�2, and their diameters showing the sample sizes there. The final total sample size in
this round is 9999, smaller by 1 than the expected n¼ 10000, due to the round-off error at each
sampling position. The sample sizes at these sampling positions are nearly the same, which is
determined by the characters of fpop and fdiag, as well as �c:

7. Conclusions

In this paper, we propose a novel, two-stage sampling strategy to estimate the number of infec-
tions of a pandemic. Our method can sufficiently utilize the information about the distributions
of both the population and the diagnosed cases, which can gather information more flexibly than
the existing methods, and hence, more efficient. Moreover, our two-stage sampling strategy does
not involve any discrete structures like strata or clusters, therefore, it can easily and automatically
adapt to the complicated distributions of population and diagnosed cases, and the corresponding
estimating method keeps simple. The GLS algorithm used in our method is also easy to imple-
ment, since it does not need a proposal distribution. Its performance is robust against the com-
plexity and multimodality of the sampling density, which overcomes the drawbacks of the other
popular samplers for general probability densities, such as the SIR or MH algorithm.

Since the true density of the infections is not known in practice, obtaining the exact optimal
settings of the sampling density and the allocation function in this sampling strategy is unrealis-
tic. Instead, we discuss the nearly optimal ones for practical implementation, which is based on
an initial rough estimate of the density of infections. The total sample size can be determined by
the pre-defined estimation precision. The small sample sizes at the sampling positions can be
avoided by modifying the allocation of sample sizes based on a convex combination. In addition,
in the second stage of our method, we just consider the simple random sampling method for
simplicity. To further improve the efficiency and eliminate the selection bias, other sampling
methods like the stratified sampling can be taken into account, with some slight modifications for
the corresponding formulae in the second stage. Further, by the numerical simulations, we discuss
the robust setting of the combination coefficient for the rough estimator of the density of infec-
tions in the minimax sense. We also compare the GLS algorithm with the SIR, MH and stratified
sampling methods in terms of the relative bias, standard deviation and coverage rate of CI. It
shows that the GLS algorithm has the smallest standard deviation and the highest coverage rate
of the approximate 95% CI. Moreover, we apply our method to the investigation of COVID-19 in
the USA. Our method shows good performance and has higher coverage rate of CI compared
with the stratified sampling. Hence, these simulations and the practical example verify the effi-
ciency of our proposed two-stage sampling method, whatever the sampling density is.
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