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tion methods for RFLADs are given. We also study the column-orthogonality of the
constructed RFLADs.
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1. Introduction

In a physical experiment, the follow-up strategy is a popularly used technique when more information is needed
o reach the experimental goal after analyzing the initial design. In some cases, the levels of some of the factors may be
ugmented in the follow-up stages. For example, Li et al. (2016) studied the factors affecting the extraction and optimized
he yields of flavonols and anthocyanins. The initial two-level design screened the important factors, and the sequential
esign extended one level of the important factors. Zhu et al. (2018) studied the process optimization of foam sizing for
otton yarns. Some important factors that selected by the initial two-level design were augmented into four levels to
urther investigate in follow-up stage. Both Li et al. (2016) and Zhu et al. (2018) augmented the levels of the factors
nder the constraint that the experimental domain is fixed. When the true model is unknown, space-filling designs are
ommonly used. Inspired by the necessity of the augmentation of the number of levels, Gao et al. (2021) discussed the
ange-extended and range-fixed level-augmented designs under the wrap-around L2-discrepancy (WD, Hickernell, 1998),
hich is a measure for one type of space-filling properties, uniformity, of a design. Similar results can be seen in Qin et al.
2016), Yang et al. (2017), Gou et al. (2018), Yang et al. (2019), and so on.

The maximin distance criterion is another type of space-filling properties (Johnson et al., 1990), which seeks the
esign points over an experimental domain to maximize the minimal Lp-distance among the pairs of points. Grosso et al.
2009) proposed the iterated local search algorithms to search maximin L2-distance Latin hypercube designs and showed
hat those approach is efficient in many numerical experiments. Moon et al. (2011) gave a new and well-performing
‘smart swap" algorithm to generate maximin Latin hypercube designs quickly under L2-distance criterion. Wang et al.
2018) used the William transformation to construct a series of equi-distant or nearly equi-distant designs, which are
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aximin L1-distance designs. Li et al. (2020) presented a construction method which constructed large maximin L1-
istance designs from small designs. Yang et al. (2021) gave some deterministic construction methods for constructing
aximin L2-distance designs in two to five dimensions based on densest packings. However, in those literatures, they did
ot consider the issue for constructing the range-fixed level-augmented designs (RFLADs) under the maximin Lp-distance
riterion. In this paper, we consider the maximin L1-distance RFLADs, in which the number of levels is augmented and the
dded points should be scattered uniformly in the whole experimental domain coupled with the initial points under the
1-distance criterion. We mainly consider the level augmentation for the two-level initial design and the number of levels
f augmentation is 1 or 2, in which the number of levels of each factor is usually not large to reduce the experimental
rror for physical experiment, as shown in Li et al. (2016) and Zhu et al. (2018).
The rest of the paper is organized as follows. Section 2 presents some definitions and notations. Section 3 gives a

onstruction method for the mixed two- and three-level RFLADs. Moreover, it can be proved that when the parameters
eet certain conditions, the design constructed by the method is a maximin L1-distance RFLAD. In Section 4, the
onstruction method and the corresponding result for the mixed two- and four-level RFLADs are presented. Some
onclusions and discussions are summarized in Section 5. All the proofs are given in the Appendix.

. Definitions and notations

Denote D(n; q1, . . . , qm) as a design with n runs, m factors and the kth factor taking values from {1, . . . , qk} for
k = 1, . . . ,m. If some qi’s are unequal, it is called as an asymmetrical design and denoted by D(n; qr11 , . . . , qrss ), where

=
∑s

i=1 ri; otherwise, it is called as a symmetrical design and denoted by D(n; qm). Denote all of the D(n; qm) and
(n; qr11 , . . . , qrss ) by D(n; qm) and D(n; qr11 , . . . , qrss ), respectively. For a design, if each level in each column occurs equally
ften, we call it as the U-type design and denote it as U(n; q1, . . . , qm). The U-type design U(n; qm) and U(n; qr11 , . . . , qrss )
an be defined similarly as above, as well as U(n; qm) and U(n; qr11 , . . . , qrss ). For a design D(n; q1, . . . , qm), we define
p(x, y) =

∑m
k=1 |xk − yk|p as the Lp-distance of any two rows x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym), where integer

≥ 1. Denote by dp(D) = min{dp(x, y) : x ̸= y, x, y ∈ D} the Lp-distance of D(n; q1, . . . , qm), and by dp,ave(D) and dp,sum(D)
he average and the sum of the Lp-distance among all pairs of rows in the design D(n; q1, . . . , qm), respectively.

Given an initial design d0, the follow-up stage may add more points inside the experimental domain to augment
he number of levels of some factors. Let n1 be the number of the additional runs, m1 and m2 be the number of
actors which need not and need to augment the number of levels, respectively. Then, as in Gao et al. (2021), a design

= (dT
0 dT

1)
T

∈ U(n + n1; 2m1 (2 + q)m2 ) is called the range-fixed level-augmented design (RFLAD), if d0 ∈ U(n; 2m),
n which the levels {1, 2} become {1, 2 + q} for the m2 level-augmented factors, and d1 ∈ D(n1; 2m1 (2 + q)m2 ). Let
f (n + n1; 2m1 (2 + q)m2 ) denote all the RFLADs. Based on the definition of RFLAD, we focus on the cases q = 1 and
= 2 in this paper, which lead to mixed two- and three-level RFLAD D1 ∈ Lf (n + n1; 2m13m2 ) and mixed two- and

our-level RFLAD D2 ∈ Lf (n+n1; 2m14m2 ). These designs are commonly used in practice, such as Li et al. (2016) and Zhu
t al. (2018), and thus it is meaningful to consider these types of designs.
For a RFLAD D = (dT

0 dT
1)

T
= (xik)1≤i≤n+n1,1≤k≤m, define d1,sum(D) as

d1,sum(D) =

n+n1∑
i=1

n+n1∑
j=1

m∑
k=1

|xik − xjk| = d1,sum(d0) + d1,sum(d1) + 2 · d1,sum(d0, d1), (1)

here d1,sum(d0) and d1,sum(d1) are the sums of L1-distance among all pairs of runs in the initial design d0 and the added
ortion d1, respectively, and d1,sum(d0, d1) is the sum of the L1-distance among all pairs of runs with one coming from d0
nd another from d1. The corresponding average value of each part denoted as ⌊d1,ave(d0)⌋, ⌊d1,ave(d1)⌋ and ⌊d1,ave(d0, d1)⌋,
espectively. According to the definition of d1(D), we have d1(D) ≤ dU (D), where dU (D) = min {⌊d1,ave(d0)⌋, ⌊d1,ave(d1)⌋,

⌊d1,ave(d0, d1)⌋}. Comparing ⌊d1,ave(D1)⌋, the common upper bound of d1(D1) (Wang et al., 2018), we use dU (D) to measure
the space-filling property of design D. The relationship between ⌊d1,ave(D1)⌋ and dU (D) will be discussed separately in
Sections 3 and 4. Then, we give the definition of the maximin L1-distance RFLAD.

Definition 1. A level-augmented design D ∈ Lf (n + n1; 2m1 (2 + q)m2 ) is called the maximin L1-distance RFLAD, if its
distance efficiency dp,eff (D) = d1(D)/dU (D) is equal to 1 among Lf (n + n1; 2m1 (2 + q)m2 ).

In the following sections, we will give methods to construct mixed two- and three-level and mixed two- and four-level
RFLADs and discuss the corresponding L1-distance of these designs.

3. Construction of mixed two- and three-level RFLADs

In this section, we provide a general construction method for mixed two- and three-level RFLAD D1 and prove that D1
is a maximin L1-distance RFLAD under some requirements. Let 1, 2, 3 and 4 denote the 2k

× 1 vectors of 1s, 2s, 3s and

4s, respectively.

2
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onstruction 1.

tep 1. Given a two-level design X ∈ U(2k
; 22k−1), the initial design d0 =

(
1 X X
2 X Xf

)
is a two-level design with 2k+1

runs and 2k+1
− 1 columns, where Xf is the foldover design of X , i.e., the level 1 in X convert to the level 2 in Xf ,

and the level 2 in X convert to the level 1 in Xf ;

tep 2. Change 2 in the first column of d0 into 3 to obtain d′

0;

tep 3. Add the additional portion d1 =
(
2 Xf X

)
to the design d′

0, D1 =
(
d′T
0 dT

1

)T is the resulting mixed two- and
three-level RFLAD.

In the Construction Method 1, the number of the added runs is the minimal value such that the resulting RFLAD is a
-type design. It is reasonable to consider this case for saving cost. To derive the requirements for constructing a maximin
FLAD under L1-distance in Construction Method 1, we first give a lemma to calculate the sum of L1-distance among all
airs of runs in the RFLAD D1.

emma 1. For any initial design d0 ∈ U(n; 2m) and the additional portion d1 ∈ D(n1, 2m13m2 ), we have

(1) d1,sum(d0) = n2 m, (2) d1,sum(d1) = n2
1m1, (3) d1,sum(d0, d1) = nn1 m.

The proof of Lemma 1 is given in the Appendix. From Lemma 1, it is easy to obtain that for any D1 ∈ Lf (n+n1; 2m13m2 ),
U (D1) = min{⌊nm/(n − 1)⌋, ⌊n1m1/(n1 − 1)⌋, ⌊m⌋}, it is used to measure the space-filling property of RFLAD D1.
oreover, by Definition 1, if a design D1 ∈ Lf (n + n1; 2m13m2 ) satisfies d1(D1) = dU (D1), then D1 is the mixed two-

and three-level maximin L1-distance RFLAD. The following theorem gives the conditions for being a maximin L1-distance
RFLAD.

Theorem 1. If the design X ∈ U(2k
; 22k−1) is a two-level saturated design, then the initial design d0 that is constructed

by Construction Method 1 is a maximin design under L1-distance, and the resulting mixed two- and three-level RFLAD
D1 ∈ Lf (3 · 2k

; 22k+1
−231) is a maximin L1-distance RFLAD with the L1-distance being 2k+1

− 3.

Remark 1. Based on the settings of n and m in Theorem 1, we have dU (D1) ≤ ⌊d1,ave(D1)⌋.

The proof of Theorem 1 and Remark 1 are given in the Appendix. By Remark 1, it is more reasonable to use dU (D1)
han ⌊d1,ave(D1)⌋ to measure the space filling of D1. Theorem 1 requires that the design X is a two-level saturated design.
ccording to Fang et al. (2005), the initial design d0 constructed by Step 1 of Construction Method 1 is a maximin L1-

distance design. By the proof of Theorem 1, we can also obtain D1 is a mixed two- and three-level maximin L1-distance
RFLAD. To illustrate the usefulness of Construction Method 1, we give an example as follows.

Example 1. According to Step 1, the initial design d0 formed based on X ∈ U(4; 23) is a two-level saturated design with
eight runs and seven columns. By Step 2, we change the initial design d0 to d′

0 whose last six columns are the same as
d0 and the first column is (1, 1, 1, 1, 3, 3, 3, 3)T . Then, we add the additional portion d1 by Step 3, where X and d1 are as
follows:

X =

⎛⎜⎝ 1 1 2
1 2 1
2 1 1
2 2 2

⎞⎟⎠ , d1 =

⎛⎜⎝ 2 2 2 1 1 1 2
2 2 1 2 1 2 1
2 1 2 2 2 1 1
2 1 1 1 2 2 2

⎞⎟⎠ .

Then D1 = (d′

0 d1)T is the resulting mixed two- and three-level maximin RFLAD with the L1-distance being 5.

. Construction of mixed two- and four-level RFLADs

Adding more points to the interior of the experimental domain to extend the levels of some factors from two to four
s also worthy studying. As similar as Section 3, we first give a construction method for mixed two- and four-level RFLAD
2, and then prove that D2 is a maximin L1-distance RFLAD under some requirements.

onstruction 2.
tep 1. Given a two-level design X ∈ U(2k

; 22k−1), the initial design d00 =
(
X X

)
is the supersaturated design with 2k

runs and 2k+1
− 2 columns;

Step 2. Change the levels 1, 2 in any lth (l = 1, 2, . . . , 2k
− 1) column of X to levels 1, 4, respectively, the changed design

is denoted as X1. Then we obtain d0 =
(
X X1

)
;

Step 3. Change the levels 1,2 in the lth column of Xf to the levels 2,3, respectively, denoted as X2. Then the additional(
X X

)
, and D =

(
T T

)T is the resulting mixed two- and four-level RFLAD.
portion d1 = 2 2 d0 d1

3
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Table 1
The two- and four-level RFLADs D2 , D′

2 , D
′′

2 .

D2(8, 2541) D′

2(8, 2
442) D′′

2(8, 2
441)

d0

⎛⎜⎝ 1 1 2 1 1 4
1 2 1 1 2 1
2 1 1 2 1 1
2 2 2 2 2 4

⎞⎟⎠ d′

0

⎛⎜⎝ 1 1 4 1 1 4
1 2 1 1 2 1
2 1 1 2 1 1
2 2 4 2 2 4

⎞⎟⎠ d′′

0

⎛⎜⎝ 1 1 1 1 4
1 2 1 2 1
2 1 2 1 1
2 2 2 2 4

⎞⎟⎠

d1

⎛⎜⎝ 1 1 2 2 2 2
1 2 1 2 1 3
2 1 1 1 2 3
2 2 2 1 1 2

⎞⎟⎠ d′

1

⎛⎜⎝ 1 1 3 2 2 2
1 2 2 2 1 3
2 1 2 1 2 3
2 2 3 1 1 2

⎞⎟⎠ d′′

1

⎛⎜⎝ 1 1 2 2 2
1 2 2 1 3
2 1 1 2 3
2 2 1 1 2

⎞⎟⎠

The meaning of Xf is the same as that in Construction Method 1. The number of added runs in Construction Method
2 is also the smallest value to satisfy the requirements of U-type structure and cost saving. In the following, we give a
lemma to calculate the sum of L1-distance among all pairs of runs in the RFLAD D2.

Lemma 2. For any initial design d0 ∈ U(n; 2m) and the additional design d1 ∈ D(n1, 2m14m2 ), we have

(1) d1,sum(d0) = 3n2m/2, (2) d1,sum(d1) = n2
1(6m1 + 5m2)/4, (3) d1,sum(d0, d1) = 3nn1m/2.

The proof of Lemma 2 is similar to Lemma 1 and is omitted. In addition, apart from the distance property, the column-
orthogonality is another important issue. Based on Lemma 2, we obtain the condition for ensuring the maximinixity under
the L1-distance of D2 and give some discussions about the column-orthogonality as follows.

Theorem 2. Let the design X ∈ U(2k
; 22k−1) be a two-level saturated design. Denote

(
XT XT

)T as D21 and
(
XT
1 XT

2

)T
as D22, where X1 and X2 are defined in Steps 2 and 3 in Construction Method 2. Suppose that the lth column of D22 is the
level-augmented column.

(1) The initial design d0 constructed by Construction Method 2 is a maximin design under L1-distance and the mixed two-
and four-level RFLAD D2 = (D21 D22) ∈ Lf (2k+1

; 22k+1
−341) is also a maximin L1-distance RFLAD with the L1-distance being

3 · 2k
− 4. All the columns of D2 are orthogonal to each other, except for the lth column of D21 and the lth column of D22.

(2) If the lth column of D21 is also augmented, the resulting design D′

2 ∈ Lf (2k+1
; 22k+1

−442) is the mixed two- and four-level
maximin L1-distance RFLAD with two level-augmented factors and the L1-distance of D′

2 is 3 · 2k
− 4. All the columns of D′

2 are
orthogonal to each other, except for the lth column of D21 and the lth column of D22.

(3) If the lth column of D21 is deleted, the resulting design D′′

2 is a maximin L1-distance RFLAD with the L1-distance being
3 · 2k

− 5 and all the columns in D′′

2 ∈ Lf (2k+1
; 22k+1

−441) are orthogonal to each other.

Remark 2. Based on the settings of n and m in Theorem 2, we have dU (D2) ≤ ⌊d1,ave(D2)⌋, dU (D′

2) ≤ ⌊d1,ave(D′

2)⌋, and
dU (D′′

2) ≤ ⌊d1,ave(D′′

2)⌋.

The proof of Theorem 2 is given in the Appendix. The proof of Remark 2 is similar to Remark 1 and is omitted. Similarly,
by Remark 2, it is also reasonable to use dU (D2), dU (D′

2) and dU (D′′

2) to measure the space-filling property of D2, D′

2 and
D′′

2 , respectively.
Next, we give an example to illustrate the usefulness of Construction Method 2.

Example 2. According to Step 1 of Construction Method 2, the initial design d00 is formed by design X ∈ U(4; 3), where
the X is the same as used in Example 1. By Step 2, we change the initial design d00 to d0 whose first five columns are the
same as d00, and the last column is (4, 1, 1, 4)T , see Table 1. Then, we add an additional portion d1 ∈ D(4; 2541) by Step 3,
which is listed in Table 1. Then D2 = (dT

0 dT
1)

T is the mixed two- and four-level RFLAD with one level-augmented factor.
By Theorem 2(1), the third column and the sixth column of D2 are not orthogonal. Then, we change the third column of
d0 to (4, 1, 1, 4)T to construct d′

0 and use an additional portion d′

1 ∈ D(4; 2442). Then D′

2 =
(

d′T
0 d′T

1

)T is the mixed
two- and four-level RFLAD with two level-augmented factors. According to Theorem 2(3), we delete the third column of
D2 to obtain D′′

2 and it is the mixed two- and four-level RFLAD in which all the columns are orthogonal to each other.

5. Discussion and conclusion

In this paper, we discuss the construction methods for the mixed two- and three-level and the mixed two- and four-
level maximin L1-distance RFLADs. For the latter one, from Theorem 2, it is found that only one pair of columns in the
design is not orthogonal. If the experimenter pays more attention to the orthogonality of RFLADs, one column of such
pair can be deleted and then all the columns in the resulting design are orthogonal to each other.

We only focus on RFLADs with minimum number of the added runs to ensure their U-type structure in this paper. We
may increase the number of the added runs more flexibly for further investigation. Moreover, for constructing general
4
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FLADs, the numerical algorithms, such as the threshold accepting algorithm, can be considered. In addition, topics of
igh-level sequential designs and the multi-stage maximin L1-distance sequential designs of computer experiment are
lso worth studying, which will be studied in the future.
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ppendix

roof Lemma 1. From the structure of d0 and d1, we have,
(1) d1,sum(d0) = (n/2 · n/2 · |3 − 1| · m2) × 2 + [n/2 · n/2 · (|2 − 1| × 2) · m1] × 2 = n2m;
(2) d1,sum(d1) = 2 · (n1/2 · n1/2 · |2 − 1| × 2 · m1) = n2

1m1;
(3) d1,sum(d0, d1) = 2 · (n/2 · n1/2 · |2 − 1| × 2) ·m1 +2 · (n/2 · n1/2 · |1 − 2|) ·m2 = nn1m. The proof is completed. □

roof Theorem 1. Denote d01 =
(
1 X X

)
= (x1, . . . , x2k )T , d02 =

(
2 X Xf

)
= (y1, . . . , y2k )T , where xi and yi are

he ith rows in d01 and d02, respectively. Since X ∈ U(2k
; 22k−1) is a two-level saturated design, both X and Xf are the

amming-equidistant designs with the coincidence number λ0, the number of places where two rows take the same
alue, of any two rows, being 2k−1

− 1. Denote λ(x, y) as the coincidence number for any two rows x, y in design. Thus,
(xi, xj) = 2k

− 1, i ̸= j = 1, . . . , 2k, where xi and xj are the ith row and the jth row in d01. Similarly, λ(yi, yj) = 2k
− 1,

̸= j = 1, . . . , 2k, where yi and yj are the ith row and the jth row in d02. Thus, both d01 and d02 are the Hamming-
equidistant designs with the coincidence number of any two rows being 2k

− 1. For the ith row in d01 and the jth row in
d02, λ(xi, yj) = 2k

− 1. Hence, the initial design d0 is a Hamming-equidistant design with the coincidence number being
2k

− 1, and d1(d0) = 2k+1. With similar argument, we can obtain that d1 is also a Hamming-equidistant design and its
L1-distance is 2k+1.

In addition, d1 =
(
2 Xf X

)
= (z1, . . . , z2k )T , where zl is the lth row in d1. We have λ(xi, zl) = 2k

− 2,
i = 1, . . . , 2k, l = 1, . . . , 2k, where xi and zl are the ith row in d01 and the lth row in d1 respectively, and the L1-distance
of the xi and zl is 2k+1

+ 1. Similarly, λ(yj, zl) = 0 or 2k, j = 1, . . . , 2k, l = 1, . . . , 2k, where yj and zl are the jth row in
d02 and the lth row in d1 respectively, then the corresponding L1-distance of the yj and zl is 2k+2

− 4 or 2k+1
− 3.

According to Lemma 1, we have

⌊d1,ave(d0)⌋ = 2k+1, ⌊d1,ave(d1)⌋ = 2k+1, ⌊d1,ave(d0, d1)⌋ = 2k+1
− 1,

which implies that dU (D1) = 2k+1
−1. Under the maximin L1-distance criterion, the added portion d1 should be scattered

uniformly in the whole experimental domain coupled with the initial points, so the requirement that the design d1 should
be a Hamming-equidistant design, and the form of d1 constructed by Construction Method 1 meets this requirement.
Under the form of d1 and conditions in Theorem 1, we have d1(D1) = 2k+1

− 3, which is not much different from
the tight upper bound dU (D1). However, the value of 2k+1

− 3 is the largest value for d1(D1) among all the designs in
Lf (n+n1; 2m13m2 ) given the initial design d0. Thus, the design D1 constructed by the Construction Method 1 is the mixed
two- and three-level maximin L1-distance RFLAD. The proof is complete. □

Proof Remark 1. For a RFLAD D1 = (dT
0 dT

1)
T

∈ Lf (n + n1; 2m13m2 ), according to Lemma 1 and Theorem 1, if n = 2n1,
m = 2k+1

− 1 and m1 = 2k+1
− 2, dU (D1) = ⌊d1,ave(d0, d1)⌋ = ⌊m⌋. We can also have

⌊d1,ave(D1)⌋ = ⌊
d1,sum(d0) + d1,sum(d1) + 2d1,sum(d0, d1)

(3n/2)(3n/2 − 1)
⌋ = ⌊

8nm + nm1

3(3n − 2)
⌋,

hen d1,ave(D1) − d1,ave(d0, d1) > 0. The proof is completed. □

Proof Theorem 2. (1) Denote d0 =
(
X X1

)
= (x1, . . . , x2k )T , d1 =

(
X X2

)
= (y1, . . . , y2k )T , where xi and yi are the ith

rows in d0 and d1, respectively. According to Lemma 2, we can obtain that dU (D2) = 3 · 2k
− 3. Since X ∈ U(2k

; 22k−1)
is a two-level saturated design, it is also a Hamming-equidistant design with the coincidence number of any two rows
being 2k−1

−1, denoted by λ0, and the design d00 in Construction Method 2 is a supersaturated design constructed by Lin
(1993). Following (Fang et al., 2003), d00 is a two-level Hamming-equidistant design with the coincidence number of
any two rows being 2λ0, so it is a maximin L1-distance design with the L1-distance being 2k. According to Step 2, d0
is also a Hamming-equidistant design, in which the coincidence number of any two rows is the same as that of d00,
therefore, d1(d0) = 3 · 2k. By calculation, the coincidence number of any two different rows in d1 is 2k

− 2, then the
L1-distance of the ith row and jth row in d1 is 3 · 2k or 3 · 2k

− 2, so d1(d1) = 3 · 2k
− 2. And if xi ∈ d0 and yj ∈ d1,

= 1, 2, . . . , 2k, j = 1, 2, . . . , 2k, we have d (d , d ) = 3 ·2k
−4. In summary, the L -distance of any two different rows in
1 0 1 1

5
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2 is 3 · 2k
− 4, which is not much different from the tight upper bound dU (D2). The form of the added portion that listed

n Step 3 of the Construction Method 2 can guarantee the space-filling property of the added portion d1 and couple with
he design D2, so we get that 3 ·2k

−4 is the largest value for the L1-distance among all the designs in Lf (2k+1
; 22k+1

−341).
herefore, under the conditions in Theorem 2(1), the design D2 constructed by the Construction Method 2 is the mixed
wo- and four-level maximin L1-distance RFLAD.

We normalize D2 = (xij)1≤i≤···≤2k+1,1≤j≤···≤2k+1−2 by xij − x̄j, where x̄j is the mean of the jth column in D2. Denote
r and xk as the rth column and kth column of the design. For xr , xk ∈ X , since X is a two-level saturated design,
o we have ⟨xr , xk⟩ = 0, 1 ≤ r ̸= k ≤ 2k

− 1, where ⟨·, ·⟩ represents the internal product of the two vectors.
o, for xr21 , xk21 ∈ D21, we have ⟨xr21 , xk21⟩ = 0, 1 ≤ r21 ̸= k21 ≤ 2k

− 1. Similarly, for xr1 , xk1 ∈ X1, we have
xr1 , xk1⟩ = 0, 1 ≤ r1 ̸= k1 ≤ 2k

−1; for xr2 , xk2 ∈ X2, we have ⟨xr2 , xk2⟩ = 0, 1 ≤ r2 ̸= k2 ≤ 2k
−1. So, for xr22 , xk22 ∈ D22,

e have ⟨xr22 , xk22⟩ = 0, 1 ≤ r22 ̸= k22 ≤ 2k
− 1. If xl21 ∈ D21 is the lth column of level augmentation, then for xl22 ∈ D22,

e have ⟨xl21 , xl22⟩ ̸= 0, where 1 ≤ l21 = l22 ≤ 2k
− 1; if xr21 ∈ D21 and xk22 ∈ D22, we have ⟨xr21 , xk22⟩ = 0 when

≤ r21 ̸= k22 ≤ 2k
− 1. Therefore, all the columns of D2 are orthogonal to each other, except for the lth column of D21

nd the lth column of D22.
(2) If the levels of the lth column of D21 is also augmented, then the design D′

2 is the RFLAD with two columns
ugmenting levels. As similar as the proof in Theorem 2(1), the d1(d0), d1(d1) and d1(d0, d1) of D′

2 need to be calculated
eparately. The calculation process is similar to Theorem 2(1) and is omitted here. By calculation, it can be obtained that
1(D′

2) = 3 ·2k
−4, and we can also obtain dU (D′

2) = 3 ·2k
−3. The L1-distance of any two different rows in D′

2 is not much
ifferent from the upper bound dU (D′

2). Moreover, we also obtain that 3 · 2k
− 4 is the largest value for the L1-distance

mong all the designs in Lf (n+ n1; 2m14m2 ) because of the form of the added portion that described in Theorem 2(2) can
uarantee the space-filling property of the added portion d′

1 and couple with the design d′

0, therefore D′

2 is a maximin L1-
istance RFLAD with two factors of level augmentation. Similar to the proof in (1), the lth column of D21 is not orthogonal
o the lth column of D22. But except for these two columns, other columns in D′

2 are column-orthogonal to each other.
(3) By calculation, we can obtain that both dU (D′′

2) and d1(D′′

2) equal to 3 · 2k
− 5. Thus, D′′

2 is the mixed two- and
our-level maximin L1-distance RFLAD. From the method to get D′′

2 , it is natural to know that all the columns in D′′

2 are
rthogonal to each other. The proof is completed. □
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