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Abstract
Most of existing augmented designs are to add some runs in the follow-up stages.
While in many cases, the level of factors should be augmented and these augmented
designs are called level-augmented designs. According to whether the experimental
domain is extended or not, they can be divided into range-extended and range-fixed
level-augmented designs. For different types of initial designs, the symmetrical and
asymmetrical level-augmented designs are discussed, respectively. Based on the prop-
erty of robustness, a uniformity criterion is a suitable choice to obtain an optimal
level-augmented design when the model is unknown. In this paper, the wrap-around
L2-discrepancy (WD) is chosen as the uniformity measure. We give the expressions
and the tight lower bounds of WD of level-augmented designs under some special
parameters. A method to construct a special case of symmetrical level-augmented
designs is given. Some examples and level-augmented uniform designs are also pro-
vided.

Keywords Level-augmented design · Lower bound · Wrap-around L2-discrepancy

1 Introduction

The follow-up strategy is popularly used in practical applications. It adds a fraction
to the initial design to obtain more information. At the initial stage of an experiment,
the design is chosen as an optimal or nearly optimal under some design criterion.
After analyzing the data of the initial design, the existing data may not be enough to
achieve the intended purpose and hence the follow-up design is needed. For example,
Wang et al. (2010) developed an anvil pre-formed gasket system, and it was necessary
to extend the range of the factor cell pressure-press from the original experimental
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upper bound 6.5 MN into 8.0 MN in the follow-up stage, for increasing the response
the maximum pressure in the conventional anvil-gasket system. Dilipkumar et al.
(2011) studied the effects of different nutrient elements on the inulinase production.
The initial experiment showed that in the follow-up stage the experimental levels
of some important factors should be extended in the initial experimental range for
obtaining higher productivity. It is known that the experimental domain in Wang
et al. (2010) was extended as well as the experimental levels, and the experimental
domain in Dilipkumar et al. (2011) was unchanged while the experimental levels were
extended. We call a design as the level-augmented design, when the numbers of levels
of some factors are augmented. Furthermore, if the experimental domain is extended
in the follow-up stage, the level-augmented design can be called the range-extended
level-augmented design (RELAD), otherwise, the range-fixed level-augmented design
(RFLAD). In this paper, we will consider both the types of RELAD and RFLAD.

In the initial stage and the follow-up stage of many experiments, they often have
no prior information for the relationships between the factors and the response. In
those cases, the uniform designs, proposed by Fang and T. (1980) and Wang and
Fang (1981), are a suitable choice for arranging the experiments. Because of the
robustness and flexibility, uniform designs have beenwidely applied inmanufacturing,
system engineering, pharmaceutics and natural sciences. Its main idea is to scatter
design points uniformly on the experimental domain. A commonly used measure of
the uniformity of a design is the discrepancy. The wrap-around L2-discrepancy (WD,
Hickernell 1998) has been widely used in the literature. Based on the WD, there were
some research of follow-up designs, such as Qin et al. (2013), Qin et al. (2016), Gou
et al. (2018), Yang et al. (2017) and Yang et al. (2019). Qin et al. (2016) used the WD
tomeasure the uniformity of two-level augmented designs, which added some runs for
the initial two-level designs. Gou et al. (2018) used the WD to measure the uniformity
of mixed two- and three-level augmented designs. Yang et al. (2019) augmented the
number of runs and factors formixed two- and three-level designs underWD.However,
in those literatures, the number of levels of factors of the added portion is the same
as that of the initial design. In those cases of RELADs and RFLADs, the numbers
of levels of some factors are augmented in the follow-up stages. Under a uniformity
criterion, the added points for each case should be scattered uniformly in the whole
experimental domain coupled with the initial points. In this paper, we discuss the
level-augmented designs under WD including both RELADs and RFLADs.

The rest of the paper is organized as follows. In Sect. 2, the definitions of range-
extended and range-fixed level-augmented designs are given and the corresponding
expressions of WD are derived. Section 3 gives the lower bounds of WD for level-
augmented designs under some special parameters. Section 4 presents a method to
construct one kind of level-augmented designs where the parameters satisfy some
conditions. We also show some examples in this section. Some conclusions and dis-
cussions are summarized in Sect. 5. All the proofs of the theorems are given in the
Appendix. In the supplementary materials, we show the proofs of all the proposi-
tions, some additional results and some uniform and nearly uniform level-augmented
designs.
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2 Level-augmented designs

Some notations are given first. A design D(n; q1, . . . , qm) is an n × m matrix X =
(x1, . . . , xm), each column xi takes values from {1, . . . , qi }, i = 1, . . . ,m. If some
qi ’s are equal, we denote it as an asymmetrical design D(n; qr11 , . . . , qrss ), where
m = ∑s

i=1 ri . If all the qi ’s are equal, we call this design as a symmetrical design and
denote it as D(n; qm). Denote all of the D(n; qm) and D(n; qr11 , . . . , qrss ) byD(n; qm)

andD(n; qr11 , . . . , qrss ), respectively. If each level in each column of D(n; q1, . . . , qm)

occurs equally often, we call it U-type design and denote it as U (n; q1, . . . , qm). The
U-type design U (n; qm) and U (n; qr11 , . . . , qrss ) can be defined similarly, as well as
the U(n; qm) and U(n; qr11 , . . . , qrss ). For each design d ∈ U(n; qr11 , . . . , qrss ), the
n runs of d can be transformed into the n points on Cm = [0, 1]m by mapping
f : xik → (2xik − 1)/(2qk), i = 1, 2, . . . , n; k = 1, 2, . . . ,m. The squared WD-
value of d ∈ U(n; qr11 , . . . , qrss ) is

WD2(d) = −
(
4

3

)m

+ 1

n2

n∑

i=1

n∑

j=1

m∏

k=1

(
3

2
− |uik − u jk |(1 − |uik − u jk |)

)

, (1)

where uik = (2xik − 1)/(2qk), i = 1, 2, . . . , n, k = 1, 2, . . . ,m.
Given an initial design d0, the follow-up stage may not only add additional runs

but also augment the number of levels of some factors.
It will be shown that the number of levels of them factors in d0 affects the property

of the augmented design. In practical applications, for RELADs, the augmentation
of the number of levels is often augmented by one, such as Wang et al. (2010). For
RFLADs, we fix the experimental range, the augmentation of the number of levels
may be larger than one, such as Dilipkumar et al. (2011). Let n1 be the number of
the added runs, m1 and m2 be the number of factors which need not to and need to
augment the number of levels, respectively. Then, we focus on those cases and give
the definitions of the two types of level-augmented designs.

Definition 1 (1)Anaugmenteddesign D1 = (dT0 dT1 )T ∈ U(n+n1; (q+1)m) is called
the symmetrical RELAD, if the initial design d0 ∈ U(n; qm2(q+1)m1), the follow-up
stage d1 ∈ D(n1; (q + 1)m) and m = m1 + m2. Let Le(n + n1; (q + 1)m) denote all
the symmetrical RELADs. The design D2 = (dT0 dT1 )T ∈ U(n + n1; qm1(q + 1)m2)

is called the asymmetrical RELAD, if d0 ∈ U(n; qm) and d1 ∈ D(n1; qm1(q +1)m2).
Let Le(n + n1; qm1(q + 1)m2) denote all the asymmetrical RELADs.

(2) An augmented design D′
1 = (dT0 dT1 )T ∈ U(n + n1; (2 + q)m) is called the

symmetrical RFLAD, if the initial design d0 ∈ U(n; 2m2(2 + q)m1), in which the
levels {1, 2} become {1, 2 + q} for the m2 level-augmented factors, the follow-up
stage d1 ∈ D(n1; (2+ q)m) and m = m1 +m2. Let L f (n + n1; (2+ q)m) denote all
the symmetrical RFLADs. The design D′

2 = (dT0 dT1 )T ∈ U(n+n1; 2m1(2+q)m2) is
called the asymmetrical RFLAD, if d0 ∈ U(n; 2m), in which the levels {1, 2} become
{1, 2 + q} for the m2 level-augmented factors, and d1 ∈ D(n1; 2m1(2 + q)m2). Let
L f (n + n1; 2m1(2 + q)m2) denote all the asymmetrical RFLADs.

To understand Definition 1, we give an example as follows.

123



444 Y.-P. Gao et al.

Example 1 Suppose the initial design d0 ∈ U(6; 2133) is

d0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We add an additional portion d1 ∈ D(3; 34) as follows,

d1 =
⎛

⎝
3 1 3 2
3 2 1 3
3 3 2 1

⎞

⎠ .

In this case, n = 6, n1 = 3,m1 = 3,m2 = 1, q = 2.We augment the number of levels
of the m2 factors from two levels to three levels by adding n1 runs. Then we expand
the experimental range and D1 = (dT0 dT1 )T is the symmetrical RELAD. Moreover,
given d0, we transform d0 into d ′

0 by Definition 1(2) and add an additional portion
d ′
1, where

d ′
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
1 2 2 2
1 3 3 3
3 1 2 3
3 2 3 1
3 3 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, d ′
1 =

⎛

⎝
2 1 3 2
2 2 1 3
2 3 2 1

⎞

⎠ .

In this case, n = 6, n1 = 3, m1 = 3, m2 = 1, q = 1. We fix the experimental
range and add three points in the domain. Then D′

1 = (d ′T
0 d ′T

1 )T is the symmetrical
RFLAD.

From Definition 1, for both range-extended and range-fixed cases, the sym-
metrical level-augmented design augments the initial mixed-level design to the
symmetrical design through augmenting the number of levels, and the asymmetrical
level-augmented design augments the symmetrical initial design to the asymmetri-
cal design. Generally, a level-augmented design can augment an initial design in
U(n; qr11 , · · · , qrss ) to a design in U(n + n1; (q1 + t1)r1, · · · , (qs + ts)rs ) with ti ≥ 0.
We only consider the special cases in Definition 1 since they are common in practice.
The RELADs augment the number of levels of the m2 factors from q to q + 1 levels,
which means that each of the experimental range of those m2 factors is extended. The
RFLADs augment the number of levels of them2 factors from 2 to 2+q levels. How-
ever, the levels {1, 2} turn into {1, 2 + q} for the initial portion and the added portion
takes values from {1, 2, . . . , 2+ q}. Hence the experimental range is not changed for
these factors. Usually, m2 may be 1 or 2.

Note that for all the cases, the initial designs and the resulting augmented designs
are required to be U-type designs owing to its good property. Then, the number of runs
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n and n1 in the initial design and the follow-up stage may have some requirements.
For example, for the (q + 1)-level symmetrical RELAD D1, let the initial number of
runs n = k1 · q(q + 1), where k1 is a positive integer, and the number of the added
runs n1 = n11 + n12, where n11 = n/q, n12 = k2 · (q + 1) and k2 is a nonnegative
integer. For the asymmetrical RELAD D2, let the initial number of runs n = k3 · q,
where k3 is a positive integer, and the number of the additional runs n1 = n11 + n12,
where n11 = n/q, n12 = k4 · (q + 1) and k4 is a nonnegative integer such that n1/q
is also a nonnegative integer. For the (2 + q)-level symmetrical RFLAD D′

1, let the
initial number of runs n = l1 · 2(2+ q), where l1 is a positive integer, and the number
of the added runs n1 = n11 + n12, where n11 = q · (n/2), n12 = l2 · (2 + q) and l2
is a nonnegative integer. For the asymmetrical RFLAD D′

2, let the initial number of
runs n = l3 · 2, where l3 is a positive integer, and the number of the additional runs
n1 = n11 + n12, where n11 = q · (n/2), n12 = l4 · (2 + q) and l4 is a nonnegative
integer such that n1/[2(2 + q)] is also a nonnegative integer. Moreover, it should be
mentioned that the restriction of level-augmented designs to be U-type designs can
be relaxed, i.e., one can augment any number of runs n1 based on the initial design.
In the rest of the paper, we will consider the cases when level-augmented designs are
U-type designs.

Definition 2 (1) A level-augmented design from Le(n + n1; (q + 1)m) or Le(n +
n1; qm1(q + 1)m2) is called the range-extended level-augmented uniform design, if it
has the smallest WD-value amongLe(n+n1; (q+1)m) orLe(n+n1; qm1(q+1)m2).

(2) A level-augmented design from L f (n + n1; (2 + q)m) or L f (n + n1; 2m1(2+
q)m2) is called the range-fixed level-augmented uniform design, if it has the smallest
WD-value among L f (n + n1; (2 + q)m) or L f (n + n1; 2m1(2 + q)m2).

From the analytical expression of the squared WD-value in (1), it is easy to see
that the WD-value is only a function of the products of αk

i j ≡ |uik − u jk |(1 − |uik −
u jk |), i, j = 1, . . . , n, i �= j and k = 1, . . . ,m. For any i and j , denote the distribution
of {αk

i j , k = 1, . . . ,m} by Fα
i j . According to Fang et al. [8], when q is even, the

αk
i j -values can only take q/2 + 1 possible values, i.e. 0, 2(2q − 2)/(4q2), 4(2q −

4)/(4q2), . . . , q2/(4q2); when q is odd, they can only take (q +1)/2 possible values,
i.e. 0, 2(2q − 2)/(4q2), 4(2q − 4)/(4q2), . . . , (q − 1)(q + 1)/(4q2). It implies that
the expressions of WD for the level-augmented designs shall vary with the parity of
q. For both range-extended and range-fixed cases, we obtain the expressions of the
squared WD-value of the symmetrical and asymmetrical level-augmented designs as
follows.

2.1 Range-extended level-augmented designs

We first give the expression of the squared WD-value of a symmetrical RELAD in
Proposition 1.
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Proposition 1 For any symmetrical RELAD D1 ∈ Le(n + n1; (q + 1)m), if q is even,
we have

WD2(D1) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

q/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)ϕi jl

×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λi jr

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

q/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)ϕ′
i jl ×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

q/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)νi jl

×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)τi jr
]

;

if q is odd, we have

WD2(D1) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(q+1)/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)ϕi jl

×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λi jr

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(q+1)/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)ϕ′
i jl ×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λ′
i jr
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+ 2
n∑

i=1

n+n1∑

j=n+1

(q+1)/2∏

l=0

(
3

2
− 2l(2(q + 1) − 2l)

4(q + 1)2

)νi jl

×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)τi jr
]

. (2)

Define c = q/2 and (q + 1)/2 for even q and odd q, respectively,
∑c

l=0 ϕi jl = m1,∑c
r=0 λi jr = m2, ϕi j0 = #{k : uik = u jk, k = 1, 2, . . . ,m1}, ϕi jl = #{k : αk

i j =
2l(2(q+1)−2l)

4(q+1)2
, k = 1, 2, . . . ,m1}, l = 1, 2, . . . , c, λi j0 = #{k : uik = u jk, k = m1 +

1, . . . ,m}, λi jr = #{k : αk
i j = 2r(2(q+1)−2r)

4(q+1)2
, k = m1+1, . . . ,m}, r = 1, 2, . . . , c for

i, j( �= i) = 1, 2, . . . , n;
c∑

l=0
ϕ′
i jl = m1,

c∑

r=0
λ′
i jr = m2, ϕ′

i j0 = #{k : uik = u jk, k =
1, 2, . . . ,m1}, ϕ′

i jl = #{k : αk
i j = 2l(2(q+1)−2l)

4(q+1)2
, k = 1, 2, . . . ,m1}, l = 1, 2, . . . , c,

λ′
i j0 = #{k : uik = u jk, k = m1 + 1, . . . ,m}, λ′

i jr = #{k : αk
i j = 2r(2(q+1)−2r)

4(q+1)2
, k =

m1 + 1, . . . ,m}, r = 1, 2, · · · , c for i, j( �= i) = n + 1, . . . , n + n1;
c∑

l=0
νi jl = m1,

c∑

r=0
τi jr = m2, νi j0 = #{k : uik = u jk, k = 1, 2, · · · ,m1}, νi jl = #{k : αk

i j =
2l(2(q+1)−2l)

4(q+1)2
, k = 1, 2, . . . ,m1}, l = 1, 2, . . . , c, τi j0 = #{k : uik = u jk, k = m1 +

1, . . . ,m}, τi jr = #{k : αk
i j = 2r(2(q+1)−2r)

4(q+1)2
, k = m1 + 1, . . . ,m}, r = 1, 2, . . . , c for

i = 1, 2, . . . , n, j = n + 1, . . . , n + n1, and #{S} is the number of elements in the set
S.

The proof of Proposition 1 is given in the Supplementary Material A1. Hereafter,
we will use the parameters defined in Proposition 1. In practical applications, mixed
two- and three-level designs and mixed three- and four-level designs are commonly
used for the initial designs, so the corresponding symmetrical RELADs are valuable.
For three-level RELAD, the expression of the squaredWD-value is given in Corollary
1. In addition, the corresponding expression of WD for four-level RELAD is given in
the Supplementary Material B1.

Corollary 1 For any initial design d0 ∈ U(n; 2m23m1) and the corresponding symmet-
rical RELAD D1 ∈ Le(n + n1; 3m), we have

WD2(D1) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)ϕi j0+λi j0
(
23

18

)m1+m2−ϕi j0−λi j0

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(
3

2

)ϕ
′
i j0+λ

′
i j0

(
23

18

)m1+m2−ϕ
′
i j0−λ

′
i j0
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+ 2
n∑

i=1

n+n1∑

j=n+1

(
3

2

)νi j0+τi j0
(
23

18

)m1+m2−νi j0−τi j0
]

. (3)

Similarly, we can also derive the expression of the squaredWD-value for the asym-
metrical RELAD as follows.

Proposition 2 For any asymmetrical RELAD D2 ∈ Le(n + n1; qm1(q + 1)m2), if q is
even, we have

WD2(D2) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

q/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)ϕi jl

×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λi jr

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

q/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)ϕ′
i jl ×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

q/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)νi jl

×

q/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)τi jr
]

;

if q is odd, we have

WD2(D2) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(q−1)/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)ϕi jl

×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λi jr

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(q−1)/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)ϕ′
i jl ×
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(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

(q−1)/2∏

l=0

(
3

2
− 2l(2q − 2l)

4q2

)νi jl

×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 1) − 2r)

4(q + 1)2

)τi jr
]

. (4)

The proof of Proposition 2 is given in the Supplementary Material A2. In addition,
two-level and three-level initial designs are also widely used in practice, hence we give
the expression of the squared WD-value for mixed two- and three-level RELAD in
Corollary 2 and the corresponding expression of WD for mixed three- and four-level
RELAD is shown in the Supplementary Material B2.

Corollary 2 For any initial design d0 ∈ U(n; 2m) and the corresponding asymmetrical
RELAD D2 ∈ Le(n + n1; 2m13m2), we have

WD2(D2) = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)ϕi j0+λi j0
(
5

4

)m1−ϕi j0
(
23

18

)m2−λi j0

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(
3

2

)ϕ
′
i j0+λ

′
i j0

(
5

4

)m1−ϕ
′
i j0

(
23

18

)m2−λ
′
i j0

+ 2
n∑

i=1

n+n1∑

j=n+1

(
3

2

)νi j0+τi j0
(
5

4

)m1−νi j0
(
23

18

)m2−τi j0
]

. (5)

2.2 Range-fixed level-augmented designs

For the symmetrical RFLAD, we give the expression of the squared WD-value as
follows.

Proposition 3 For any symmetrical RFLAD D′
1 ∈ L f (n + n1; (2+ q)m), if q is even,

we have

WD2(D′
1) = −

(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)λi j0
(
3

2
− q + 1

(q + 2)2

)λi j1

×

q/2+1∏

l=0

(
3

2
− 2l(2(q + 2) − 2l)

4(q + 2)2

)ϕi jl
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+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

q/2+1∏

l=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)ϕ′
i jl ×

q/2+1∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

q/2+1∏

l=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)νi jl

×

q/2+1∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)τi jr
]

;

if q is odd, we have

WD2(D′
1) = −

(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)λi j0
(
3

2
− q + 1

(q + 2)2

)λi j1

×

(q+1)/2∏

l=0

(
3

2
− 2l(2(q + 2) − 2l)

4(q + 2)2

)ϕi jl

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(q+1)/2∏

l=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)ϕ′
i jl ×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

(q+1)/2∏

l=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)νi jl

×

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)τi jr
]

. (6)

The proof of Proposition 3 is given in the Supplementary Material A3. If the initial
design is a mixed two- and three-level design, the expression of the squared WD-
value of the symmetrical three-level RFLAD is the same as (3). In addition, if the
initial design is a mixed two- and four-level design, which is also commonly used in
practice, the corresponding expression of WD for four-level RFLAD is shown in the
Supplementary Material B3.

Similarly, we can obtain the expression of the squared WD-value for the asymmet-
rical RFLAD as follows.
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Proposition 4 For any asymmetrical RFLAD D′
2 ∈ L f (n + n1; 2m1(2+ q)m2), if q is

even, we have

WD2(D′
2) = −

(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)ϕi j0
(
5

4

)ϕi j1
(
3

2

)λi j0
(
3

2
− (q + 1)

(q + 2)2

)λi j1

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(
3

2

)ϕ′
i j0

(
5

4

)ϕ′
i j1

(q+2)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

(
3

2

)νi j0
(
5

4

)νi j1 (q+2)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)τi jr
]

;

if q is odd, we have

WD2(D′
2) = −

(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[ n∑

i=1

n∑

j( �=i)=1

(
3

2

)ϕi j0
(
5

4

)ϕi j1
(
3

2

)λi j0
(
3

2
− (q + 1)

(q + 2)2

)λi j1

+
n+n1∑

i=n+1

n+n1∑

j( �=i)=n+1

(
3

2

)ϕ′
i j0

(
5

4

)ϕ′
i j1

(q+1)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)λ′
i jr

+ 2
n∑

i=1

n+n1∑

j=n+1

(
3

2

)νi j0
(
5

4

)νi j1 (q+1)/2∏

r=0

(
3

2
− 2r(2(q + 2) − 2r)

4(q + 2)2

)τi jr
]

. (7)

The proof of Proposition 4 is given in the Supplementary Material A4. In addition,
two- and three-level and two- and four-level RFLADs are also worthy to be discussed.
As similar as the symmetrical case, the expression of the squared WD-value for the
asymmetrical two- and three-level RFLAD is the same as (5), and the expression of
WD for the two- and four-level RFLAD can be found in the Supplementary Material
B4.

3 Lower bounds of level-augmented designs

Based on the expressions of WD for RELADs and RFLADs, one wants to search
uniform design under some given parameters in practice. Thus it is necessary to derive
the corresponding lower bound,which is the benchmark for searching uniformdesigns.
In this section, we give the lower bounds of WD for symmetrical and asymmetrical
level-augmented designs under some special parameters.
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For any initial design d0 ∈ U(n; 2m23m1), we can add n1 runs to obtain a sym-
metrical RELAD D1 ∈ Le(n + n1; 3m) or RFLAD D′

1 ∈ L f (n + n1; 3m). Since the
expressions of the squared WD-value for those cases are the same, the corresponding
lower bound of WD for the three-level RELAD and RFLAD is also the same and we
obtain the lower bound as follows.

Theorem 1 For any symmetrical range-extended level-augmented design in Le(n +
n1; 3m) or a symmetrical range-fixed level-augmented design in L f (n + n1; 3m), the
lower bound of the squared WD-value is

LBW1 = −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[

n(n − 1)

(
3

2

) (n−3)m1
3(n−1) + (n−2)m2

2(n−1)
(
23

18

) 2nm1
3(n−1) + nm2

2(n−1)

+ n1(n1 − 1)

(
3

2

)m1(n1−3)
3(n1−1) + [3n11(n11−1)+(n12−3)n12]m2

3n1(n1−1)
(
23

18

) 2n1m1
3(n1−1) +

(3n21−3n211−n212)m2
3n1(n1−1)

+ 2nn1

(
3

2

)m1
3 + n12m2

3n1
(
23

18

) 2m1
3 +m2(3n1−n12)

3n1
]

. (8)

This lower bound can be achieved if all its Fα
i j distributions, i �= j , are the same.

The proof of Theorem 1 is given in the Appendix. Theorem 1 shows the lower
bound for three-level level-augmented design. In this case, each Fα

i j distribution can
be uniquely determined by the Hamming distance. The Hamming distance between
the two rows is defined as the number of places where the two rows take different
values. Thus the condition that all Fα

i j distributions are the same is equivalent to that
this level-augmented design is a Hamming-equidistant design.

In addition, for any initial design d0 ∈ U(n; 2m), we can add n1 runs to obtain
an asymmetrical RELAD D2 ∈ Le(n + n1; 2m13m2) or RFLAD D′

2 ∈ L f (n +
n1; 2m13m2). Similarly, the expressions of the squared WD-value for them are the
same. Then the same lower bound of WD for the asymmetrical two- and three-level
RELAD and RFLAD is shown in the following theorem.

Theorem 2 For any asymmetrical range-extended level-augmented design in Le(n +
n1; 2m13m2) or asymmetrical range-fixed level-augmented design in L f (n + n1;
2m13m2), the lower bound of the squared WD-value is max{LBW2, LBW

′
2}, where

LBW2

= −
(
4

3

)m

+ 1

(n + n1)

(
3

2

)m

+ 1

(n + n1)2

[

n(n − 1)

(
3

2

) (n−2)m1
2(n−1) + (n−2)m2

2(n−1)
(
5

4

) nm1
2(n−1)

(
23

18

) nm2
2(n−1)
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+ n1(n1 − 1)

(
3

2

) m1(n1−2)
2(n1−1) + [3n11(n11−1)+(n12−3)n12 ]m2

3n1(n1−1)
(
5

4

) n1m1
2(n1−1)

(
23

18

) (3n21−3n211−n212)m2
3n1(n1−1)

+ 2nn1

(
3

2

) m1
2 + m2n12

3n1
(
5

4

) m1
2

(
23

18

) 3n1m2−m2n12
3n1

]

, (9)

LBW2 can be achieved if all its Fα
i j distributions, i �= j , are the same, and

LBW
′
2 = −

(
4

3

)m

+ 1

(n + n1)2

(
5

4

)m1
(
23

18

)m2 m1∑

i=0

m2∑

j=0

(
m1
i

) (
m2
j

) (
1

5

)i ( 4

23

) j

θi j ,

(10)

which was obtained by Chatterjee et al. (2005). Here, θi j = (n+n1)gi j + li j (gi j +1),
and hi j = 2i3 j , gi j is the largest integer contained in (n + n1)/hi j , li j = (n + n1) −
hi j gi j , 0 ≤ i ≤ m1, 0 ≤ j ≤ m2.

The proof of Theorem 2 is given in the Appendix. Similar to the discussion in Fang
et al. (2018), LBW2 is often larger than LBW ′

2 and is easier to reach for saturated or
supersaturated designs, while LBW ′

2 is often larger than LBW2 and is more suitable
for evaluating the uniformity of designs with large n+n1 and smallm. Moreover, even
under the given parameters, the lower bounds of level-augmented designs in Theorems
1–2 may not be attainable. When the parameters meet the conditions in Theorem 1 or
Theorem 2, the lower bounds of the corresponding level-augmented designs can be
obtained directly.

4 Constructionmethod

In this section, we give a method to construct three-level level-augmented designs.
In the construction method, we utilized the results in Fang et al. (2005) that a
three-level Hamming-equidistant design is also a uniform design under WD. The
Hamming-equidistant design can be obtained only when some specific conditions for
the parameters in Theorem 3 are satisfied. Assume that only one factor augments the
number of levels, i.e. m2 = 1. Let 1, 2 and 3 denote the n0 × 1 vectors of 1s, 2s and
3s, respectively. The following steps can be used to construct the three-level RELAD
D1 and RFLAD D′

1.

Step 1. Given a three-level design d ∈ U(n0; 3m0);
Step 2. Let φ+(d) = d + 1(mod 3) and φ−(d) = d + 2(mod 3);
Step 3. Let the initial mixed two- and three-level design have the form d0 =(

1 d d d
2 d φ+(d) φ−(d)

)

;

Step 4. Choose the additional portion d1 = (
3 d φ−(d) φ+(d)

)
to obtain the sym-

metrical
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RELAD D1 = (
dT0 dT1

)T
,

Step 5. Change the vector 2 in d0 into the vector 3 to obtain d ′
0 and choose the

additional portion

d ′
1 = (

2 d φ−(d) φ+(d)
)
to obtain the symmetrical three-level RFLAD

D′
1 = (

d ′T
0 d ′T

1

)T
.

In the construction method, the number of the added runs n0 is the minimal value
that makes the resulting level-augmented design to be a U-type design. Hence it is
reasonable to consider this case for saving cost. When the parameters satisfy some
limitations which are shown in the following Theorem 3, three-level level-augmented
designs D1 and D′

1 constructed by the above method have good uniformity.

Theorem 3 (1) Consider the initial design d0 ∈ U(2n0; 2133m0) constructed by a
uniform design d in U(n0; 3m0), as in Step 3 of the construction method, where m0 =
(n0 − 1)/2. If 2n0 = 2 · 3t−1, t ≥ 2 and 3m0 + 1 = m, then we add the additional
portion d1 in D(n0; 313m0). The resulting three-level RELAD D1 in Le(3n0; 3m) can
be a Hamming-equidistant design and hence the lower bound given in Theorem 1 is
reachable.

(2) If a three-level RELAD D1 inLe(3n0; 33(n0−1)+1) is constructed by d, a uniform
design in U(n0; 3n0−1), then the distribution of any two rows of D1 is nearly the same,
i.e. the difference of the Hamming distance of any two rows in D1 is not more than
one.

The proof of Theorem 3 is given in the Appendix. Compared with D1, the RFLAD
D′
1 constructed by Step 5 of the construction method just exchanges the position of

the vectors 2 and 3, hence it shall lead to the same results as in Theorem 3. In addition,
in Step 3 of the construction method, it is necessary to verify whether d0 is a uniform
or nearly uniform design or not. We first choose a uniform or nearly uniform design d
in U(9; 3m0) from the web http://web.stat.nankai.edu.cn/cms-ud/, where m0 can take
different values. Then we construct d0 with 18 runs and 3m0 +1 columns using d and
calculate the value of WD2(d0). According to the expression of the lower bound of
WD for mixed-level designs in Zhou et al. (2008), we calculate the value of LB(d0)
and use the efficiency Deff(d0) = LB(d0)/WD2(d0) to measure the uniformity of the
constructed design. Then, we use the constructed d0 to construct D1 with 27 runs and
3m0 + 1 columns by Step 4 of the construction method. By the formulas in Theorem
1, we calculate the lower bound of D1 and measure the uniformity of D1 by the
efficiency Deff(D1) = LB(D1)/WD2(D1). The results are shown in Table 1 where
m1 = 3m0. From the 4th and 6th columns of Table 1, most of the efficiencies are
larger than 99% and both d0 and D1 become more and more uniform as the number
of m1 increases. Thus it shows that both the constructed initial design d0 and the
level-augmented design D1 have good uniformity if d is a uniform or nearly uniform
design. When m1 = 12 and m2 = 1, D1 reaches the lower bound of WD and is a
level-augmented uniform design. It meets the requirements of Theorem 3(1). When
m1 = 6 and m2 = 1, the efficiency of D1 is relatively small since Theorem 1 is more
applicable to saturated or supersaturated designs.
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Table 1 The values of WD2(d0), Deff(d0), WD2(D1) and Deff(D1)

m WD2(d0) Deff(d0) WD2(D1) Deff(D1)

m1 m2

6 1 1.0042 0.8836 0.7825 0.9053

12 1 11.6351 1.0000 9.3820 1.0000

18 1 137.9057 0.9754 107.0072 0.9787

24 1 1.5090×103 0.9977 1.1263×103 0.9982

30 1 1.6932×104 0.9911 1.2177×104 0.9923

33 1 5.6434×104 0.9942 3.9997×104 0.9951

36 1 1.8835×105 0.9972 1.3185×105 0.9979

45 1 7.1209×106 0.9973 4.8587×106 0.9978

51 1 8.0544×107 0.9981 5.4435×107 0.9985

57 1 9.1342×108 0.9988 6.1377×108 0.9991

Next, we give an example to illustrate the usefulness of the construction method,
in which all the mentioned designs are shown in Example 1.

Example 2 Given d = (1 2 3)T , then φ+(d) = (2 3 1)T , φ−(d) = (3 1 2)T ,
and we construct the initial design d0 by Step 3. According to the expression of
the squared WD-value for mixed two- and three-level design in Fang et al. (2018),
WD2(d0) = 0.2571 and its efficiency Deff = 99.92%, which shows that the initial
design is a nearly uniform design. Based on Step 4, we get the additional portion d1
and D1 = (dT0 dT1 )T is the symmetrical RELAD. By Step 5, we can also get d ′

0 and
d ′
1. Then D′

1 = (d ′T
0 d ′T

1 )T is the symmetrical RFLAD. According to Corollary 1,
both WD2(D1) and WD2(D′

1) are equal to 0.1837, which reaches the lower bound
in Theorem 1. Hence D1 and D′

1 are the symmetrical range-extended and range-fixed
level-augmented uniform designs, respectively.

Given the initial design, if the conditions in Theorem 3 are not satisfied, the con-
structionmethodmaynotwork and the threshold accepting algorithmmaybe a suitable
choice. It was widely used to search uniform designs, see Fang et al. (2003), Winker
and Fang (1997). Its main idea is as follows. Given an initial design and the neigh-
borhood, each iteration of the threshold accepting algorithm selects a new design
randomly in the neighborhood of the current design. If the difference between the
WD-value of the new design and that of the current design is less than or equal to a
given threshold Ti in the i th iteration, then the current design is replaced by the new
design. The threshold Ti is a nonnegative number and decreases to zero. The threshold
accepting algorithm is a fast global searching method and can find the uniform or
nearly uniform level-augmented designs. The following example is an asymmetrical
case in which the designs are searched by the threshold accepting algorithm.

Example 3 Consider the following initial design d0 ∈ U(8; 24),
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d0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
1 2 2 1
1 2 1 2
1 1 2 2
2 2 1 1
2 1 2 1
2 1 1 2
2 2 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

According to Fang et al. (2003),WD2(d0) = 0.4142 and d0 reaches the lower bound
ofWD inU(8; 24). By the threshold accepting algorithm,we add the additional portion
d1(∈ D(4; 34)) as

d1 =

⎛

⎜
⎜
⎝

3 2 1 2
3 1 2 2
3 1 1 1
3 2 2 1

⎞

⎟
⎟
⎠ ,

and D2 = (dT0 dT1 )T is the asymmetrical RELAD. In addition, we change the initial
design to d ′

0, whose last three columns are the same as d0, and the first column is
(1, 1, 1, 1, 3, 3, 3, 3)T . We use the threshold accepting algorithm again to add the
additional portion as

d ′
1 =

⎛

⎜
⎜
⎝

2 1 1 2
2 2 2 2
2 2 1 1
2 1 2 1

⎞

⎟
⎟
⎠ ,

and D′
2 = (d ′T

0 d ′T
1 )T is the asymmetrical RFLAD. According to Corollary 2, both

WD2(D2) and WD2(D′
2) are equal to 0.3542, which reaches the lower bound given

in Theorem 2. Thus D2 and D′
2 are the asymmetrical range-extended and range-fixed

level-augmented uniform designs, respectively.

In addition, Table 2 also presents the summary of some uniform or nearly uniform
level-augmented designs. The initial designs are all uniform designs or nearly uniform
designs. The last three symmetrical level-augmented designs are constructed by the
construction method and the rest of the designs are selected by using the threshold
accepting algorithm. The last two columns show the squared WD-values and the effi-
ciency of the level-augmented designs, respectively. It can be seen that the efficiencies
of all the level-augmented designs are high and most of them are larger than 97%. All
the level-augmented designs in Table 2 are listed in the Supplementary Material C.

5 Conclusion

In this paper, we discuss the level-augmented designs underWD. The level-augmented
designs are applicable and useful when the number of the levels of some factors needs
to be augmented in the follow-up stage. Based on the change of the experimental range,
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Table 2 Summary of some uniform or nearly uniform level-augmented designs

Initial design Level-augmented design WD2 Deff

U (4; 23) D2(6; 2231), D′
2(6; 2231) 0.1889 1.0000

D2(6; 2132), D′
2(6; 2132) 0.1507 0.9768

U (8; 24) D2(12; 2232), D′
2(12; 2232) 0.3051 0.9725

U (8; 27) D2(12; 2631), D′
2(12; 2631) 1.6911 0.9846

D2(12; 2532), D′
2(12; 2532) 1.5580 0.9718

U (8; 214) D2(12; 21331), D′
2(12; 21331) 34.0169 0.9919

D2(12; 21232), D′
2(12; 21232) 32.7958 0.9900

U (12; 211) D2(18; 21031), D′
2(18; 21031) 9.4113 0.9823

D2(18; 2932), D′
2(18; 2932) 8.8924 0.9798

U (12; 222) D2(18; 22131), D′
2(18; 22131) 690.3619 0.9970

D2(18; 22032),D′
2(18; 22032) 675.9174 0.9951

U (16; 28) D2(24; 2731), D′
2(24; 2731) 2.5874 0.9961

D2(24; 2632),D′
2(24; 2632) 2.4086 0.9834

U (16; 215) D2(24; 21431), D′
2(24; 21431) 44.6417 0.9616

D2(24; 21332), D′
2(24; 21332) 42.9649 0.9547

U (16; 230) D2(24; 22931), D′
2(24; 22931) 1.2858×104 0.9981

D2(24; 22832), D′
2(24; 22832) 1.2704×104 0.9949

U (18; 21312) D1(27; 313), D′
1(27; 313) 9.3820 1.0000

U (18; 21318) D1(27; 319), D′
1(27; 319) 107.0072 0.9787

U (54; 21340) D1(81; 341), D′
1(81; 341) 1.8098×105 1.0000

the level-augmented designs can be divided into range-extended and range-fixed level-
augmented designs. From different types of initial designs, we define symmetrical and
asymmetrical level-augmented designs for both range-extended and range-fixed cases.

The expressions of the squared WD-value for these level-augmented designs are
derived. The lower bounds ofWDfor range-extended and range-fixed level-augmented
designs are also obtained under some special parameters, which can be used as the
benchmark for constructing level-augmented uniform designs. Moreover, we give a
method to construct a special case of symmetrical level-augmented designs. In order
to reduce the computational complexity, a further interesting question is to study
a method to construct the general level-augmented designs. In addition, the level-
augmented designs which contain both range-extended and range-fixed cases are also
important, but more complex. It is beyond the scope of the current paper but worthy
for further investigations.

Supplementary Materials

The proofs of all the propositions and the additional results are provided in the sup-
plementary materials.
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Appendix

In order to prove Theorems 1 and 2, we give the following lemmas first. The proofs
of Lemmas 1 and 2 are straightforward and are omitted.

Lemma 1 For any symmetrical RELAD D1 ∈ Le(n+n1; 3m) or symmetrical RFLAD
D′
1 ∈ L f (n + n1; 3m), we have

(1)
n∑

i=1

n∑

j �=i=1

ϕi j0 = m1n(n − 3)

3
, (2)

n∑

i=1

n∑

j �=i=1

λi j0 = m2n(n − 2)

2
,

(3)
n+n1∑

i=n+1

n+n1∑

j �=i=n+1

ϕ′
i j0 = m1n1(n1 − 3)

3
,

(4)
n+n1∑

i=n+1

n+n1∑

j �=i=n+1

λ′
i j0 =

[

n11(n11 − 1) + (n12 − 3)n12
3

]

m2,

(5)
n∑

i=1

n+n1∑

j=n+1

νi j0 = m1nn1
3

, (6)
n∑

i=1

n+n1∑

j=n+1

τi j0 = m2nn12
3

.

Lemma 2 For any asymmetrical RELAD D2 ∈ Le(n + n1; 2m13m2) or asymmetrical
RFLAD D′

2 ∈ L f (n + n1; 2m13m2), we have

(1)
n∑

i=1

n∑

j �=i=1

ϕi j0 = m1n(n − 2)

2
, (2)

n∑

i=1

n∑

j �=i=1

λi j0 = m2n(n − 2)

2
,

(3)
n+n1∑

i=n+1

n+n1∑

j �=i=n+1

ϕ′
i j0 = m1n1(n1 − 2)

2
,

(4)
n+n1∑

i=n+1

n+n1∑

j �=i=n+1

λ′
i j0 =

[

n11(n11 − 1) + (n12 − 3)n12
3

]

m2,

(5)
n∑

i=1

n+n1∑

j=n+1

νi j0 = m1nn1
2

, (6)
n∑

i=1

n+n1∑

j=n+1

τi j0 = m2nn12
3

.

Proof of Theorem 1. Based on Lemma 1, similar to the proof of Theorem 2.1 in Fang
et al. (2005), we can obtain the result of Theorem 1 easily. A symmetrical RELAD
D1 ∈ Le(n + n1; 3m) or a symmetrical RFLAD D′

1 ∈ L f (n + n1; 3m) is a uniform
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design under WD, if all its Fα
i j distributions, i �= j , are the same. In this case, the

WD-value of this design achieves the lower bound. 	

Proof of Theorem 2. Based on Lemma 2, similar to the proof of Theorem 1, we can
obtain the result of Theorem 2. 	

Proof of Theorem 3. (1) Denote ( 1 d d d ) as d01 and

(
2 d φ+(d) φ−(d)

)
as d02.

According to Fang et al. (2005), since d = (di j )1≤i≤n0,1≤ j≤m0 is a three-level uniform
design, it is also a Hamming-equidistant design and the coincidence number of any
two rows in d is λ0 = m0(n0 − 3)/[3(n0 − 1)]. The coincidence number between
two rows is defined as the number of places where two rows take the same value.
The condition n0 = 3t−1, t ≥ 2, ensures that λ0 is an integer and the design d is
available. Then, d01 is also a Hamming-equidistant design with coincidence number
of any two rows being 3λ0 + 1. According to the definitions of φ+(d) and φ−(d)

in Algorithm 1, they are obtained by the permutation of the levels of d. Hence both
the coincidence numbers of any two rows in d02 and in d1 are also 3λ0 + 1. For
i = 1, . . . , n0, the i th rows of d, φ+(d) and φ−(d) are different from each other and
thus the coincidence number of any two among the i th rows in d01, d02 and d1, is
m0, the number of the columns of d. The condition m0 = (n0 − 1)/2 implies that
m0 = 3λ0 + 1. For 1 ≤ i �= j ≤ n0, let Nc

i j = {k | dik = d jk, k = 1, . . . ,m0} and
Nh
i j = {1, . . . ,m0}− Nc

i j . For any k ∈ Nc
i j and 1 ≤ i ≤ n0, dik , φ+(dik) and φ−(dik)

become different from each other. However, for any l ∈ Nh
i j and 1 ≤ i �= j ≤ n0, if

d jl is one more than or two less than dil , φ+(d jl) �= dil and φ−(d jl) = dil ; if d jl

is two more than or one less than dil , φ+(d jl) = dil and φ−(d jl) �= dil . Hence the
coincidence number of the i th row in d01 and the j th row in d02 is alsom0(= 3λ0+1)
for 1 ≤ i �= j ≤ n0. By similar arguments, we can obtain the same results for d01 and
d1, as well as d02 and d1. Therefore, the resulting three-level level-augmented design
D1 is a Hamming-equidistant design and hence the lower bound given in Theorem 1
is reachable.

(2) Similar to the proof of (1), since d is a uniform design in U(n0; 3n0−1), it is also
a Hamming-equidistant design and λ0 = (n0 − 3)/3. Since d is a U-type design, n0
must be a multiple of 3 which ensures that λ0 is an integer. The coincidence numbers
of any two rows in d01, d02 and d1 are n0 − 2(= 3λ0 + 1). For 1 ≤ i ≤ n0, the
coincidence number of any two among the i th rows in d01, d02 and d1, is n0 − 1, the
number of the columns of d. For 1 ≤ i �= j ≤ n0, the coincidence number of the i th
row in d01 and the j th row in d02 is n0 − 1, which is also true for d01 and d1, d02 and
d1. Hence for D1, the difference of the Hamming distances between its rows is not
more than one. For both (1) and (2), the corresponding arguments for D′

1 are similar
to the case of D1 and we omit it. 	


References

Bates RA, Buck RJ, Wynn ERP (1996) Experimental design and observation for large systems. J R Stat
Soc 58:77–94

Chatterjee K, FangKT, QinH (2005) Uniformity in factorial designs withmixed levels. J Stat Plan Inference
128:593–607

123



460 Y.-P. Gao et al.

Dilipkumar M, Rajasimman M, Rajamohan N (2011) Application of statistical design for the production
of inulinase by streptomyces sp. using pressmud. Front Chem Sci Eng 5:463–470

Dueck G, Scheuer T (1990) Threshold accepting: A general purpose optimization algorithm appearing
superior to simulated annealing. J Comput Phys 90:161–175

Fang KT (1980) Uniform design: an application of number-theoretic methods to experimental designs. Acta
Math Appl Sin 4:363–372

Fang KT, Ma CX (2001) Orthogonal and uniform experimental design. Science Press, Beijing
Fang KT, Lu X, Winker P (2003) Lower bounds for centered and wrap-around L2-discrepancies and

construction of uniform designs by threshold accepting. J Complex 19:692–711
Fang KT, Tang Y, Yin J (2005) Lower bounds for wrap-around L2-discrepancy and constructions of sym-

metrical uniform designs. J Complex 21:757–771
Fang KT, Liu MQ, Qin H, Zhou YD (2018) Theory and application of uniform experimental designs.

Springer, Singapore
Gou TX, Qin H, Kashinath C (2018) Efficient asymmetrical extended designs under wrap-around L2-

discrepancy. J Syst Sci Complex 31:1391–1404
Hickernell FJ (1998) Lattice rules: Howwell do theymeasure up? In: Hellekalek P, Larcher G (eds) Random

and quasi-random point sets. Springer, New York, pp 106–166
Li W, Lin DKJ (2003) Optimal foldover plans for two-level fractional factorial designs. Technometrics

45:142–149
Qin H, Chatterjee K, Ou ZJ (2013) A lower bound for the centered L2 -discrepancy on combined designs

under the asymmetric factorials. Statistics 47:992–1002
Qin H, Gou TX, Chatterjee K (2016) A new class of two-level optimal extended designs. J Korean Stat Soc

45:168–175
Wang Y, Fang KT (1981) A note on uniform distribution and experimental design. English version, Science

bulletin
Wang H, He D, Tan N, WangW, Wang J, Dong H (2010) Note: an anvil-preformed gasket system to extend

the pressure range for large volume cubic presses. Rev Sci Instrum 81:1013–42
Winker P, Fang KT (1997) Application of threshold accepting to the evaluation of the discrepancy of a set

of points. SIAM J Numer Anal 34:2038–2042
Yang F, Zhou YD, Zhang XR (2017) Augmented uniform designs. J Stat Plan Inference 182:61–73
Yang F, Zhou YD, Zhang AJ (2019) Mixed-level column augmented uniform designs. J Complex 53:23–39
Yue RX, Hickernell FJ (1999) Robust designs for fitting linear models with misspecification. Stat Sin

9:1053–1069
Zhou YD, Ning JH, Song XB (2008) Lee discrepancy and its applications in experimental designs. Stat

Probab Lett 78:1933–1942
Zhou YD, Fang KT, Ning JH (2013) Mixture discrepancy for quasi-random point sets. J Complex 29:283–

301

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Level-augmented uniform designs
	Abstract
	1 Introduction
	2  Level-augmented designs
	2.1 Range-extended level-augmented designs
	2.2  Range-fixed level-augmented designs

	3 Lower bounds of level-augmented designs
	4 Construction method
	5 Conclusion
	Supplementary Materials
	Acknowledgements
	Appendix
	References




