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a b s t r a c t

This paper focuses on the optimal design of time point allocation in repeated mea-
surements experiments with applications to longitudinal studies. Most design literature
mainly focus on the estimation of the mean responses of each subject whereas we
try to find the design that aids the estimation of both the mean and the correlation
structures of longitudinal observations. Our design criterion also takes into account the
missing data issue, which is very common in practice. Instead of the local optimal
design approach, which relies on a good guess of the unknown parameter, we adopt the
Bayesian optimal design approach to protect for the parameter uncertainty. To allow for
operational errors such as time delays, we discuss the sampling windows which allow
flexibility in timing the data collection. In other words, our design is robust against the
missingness, parameter uncertainty, and operational errors. Simulation studies and a
real data analysis are carried out to demonstrate the proposed criterion as well as the
resulting designs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal data arise frequently in the biomedical, epidemiological, social, and economical fields. A salient feature of
ongitudinal studies is that subjects are measured repeatedly over time. Thus, the responses between subjects may be in-
ependent but the repeated measurements within subjects are very likely to be correlated. Ignoring such correlation could
esult in invalid statistical inferences. Based on the modified Cholesky decomposition, Pourahmadi (1999) and Pourahmadi
2000) reparameterized the marginal covariance matrix by a mean–covariance model where the mean and the covariance
atrix were modeled jointly and estimated by the maximum likelihood estimation (MLE) method. Afterwards, much

iterature work has devoted to extending the approach. Ye and Pan (2006) estimated the parameters in mean–covariance
odels within the framework of generalized estimating equations. Leng et al. (2010) proposed a data-driven approach
ased on semiparametric regression models for the mean and the covariance simultaneously, motivated by the modified
holesky decomposition. Xu et al. (2019) developed a maximum Lq-likelihood estimation for the mean–covariance model,

which could yield robust and consistent estimators of the mean regression coefficients.
In practical longitudinal studies, the measurements of interest can be missing due to subjects’ non-response, dropout,

or other reasons. In fact, it is rare to have complete data. There is a rich statistical literature on the analysis of missing
data (Rubin, 1976; Little and Rubin, 1994). Two types of missing patterns are generally considered. One is called
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‘nonmonotone missing’, where a subject may miss particular visits during the course of study and return at later scheduled
visits. The other is ‘monotone missing’, where a subject may leave the study at some point and never return. For both
missing patterns, the missing mechanisms can be classified into three categories. If the missingness is independent of both
observed and unobserved data, it is missing completely at random (MCAR). Given the observed data, if the missingness is
independent of the unobserved data, it is missing at random (MAR). If the missing probability depends on the unobserved
data, it is not missing at random (NMAR). Many studies also have been done to handle incomplete longitudinal data based
on the mean–covariance models. Pan and MacKenzie (2006) presented new computational algorithms which can handle
unbalanced longitudinal data with missingness, thereby extending existing methods. Huang et al. (2012) embedded the
covariance matrix of the observed data in a larger covariance matrix and employed the EM algorithm for both monotone
and nonmonotone missingness. Garcia et al. (2012) adopted data-based and graphical methods to handle missing data.

From the viewpoint of experimental designs, it is well known that a carefully designed experiment can substan-
ially improve statistical inferences. Many criteria have been proposed in optimal experimental designs. For example,
-optimality criterion maximizes the determinant of the information matrix of the estimates for the parameters and
hus minimized the volume of the confidence region of the parameters of interest. However, in previous studies of
ongitudinal data, most focused on the estimation of the mean or the fixed effects and few on the covariance matrix,
.g. Ouwens et al. (2002), Tekle et al. (2008), Zhou et al. (2021). Instead, we hope to focus on the estimation of mean and
ovariance concurrently. Moreover, we also try to address multiple issues simultaneously. (a) The designs which satisfy
he optimality criterion without considering the missing observations may be not optimal when there exists missingness
ndeed. Hence the optimality criteria need to be modified to accommodate for the missingness. Herzberg and Andrews
1976) and Andrews and Herzberg (1979) added the random variables to characterize the potential missingness in the
nformation matrix and maximized its expected determinant. Imhof et al. (2004) introduced a known probability function
o depict the probability of valid observation at a trial and put it into the original D-optimality criterion. Alrweili et al.
2019) considered the minimax loss response surface designs which is robust to one missing design point. (b) For a
onlinear model including the one that we will use, the information matrix and hence the optimal design depends on the
rue value of the parameter. However, the latter is unknown during the planning stage of experiment. One mainstream
pproach is to derive the optimal design for a particular guessed value of the parameter, and hence the local optimal
esign. Here, we would adopt the Bayesian optimal design, which is to find a design that is a good compromise over a
istribution of the parameter as a prior information. (c) In longitudinal studies, accurate timing for taking measurements
s difficult or even impossible. For example, the precisely prearranged times may be not likely to be adhered to in clinical
xperiments where patients have to attend a clinic for treatment. To allow an experimenter some flexibility in timing the
ata collection and assure a required design efficiency for parameter estimation, a sampling window approach has been
sed previously in pharmacokinetic studies and other clinical trials. Graham and Aarons (2006) proposed an approach
o pharmacokinetic study design which determined the optimal time windows around the D-optimal pharmacokinetic
ampling times. Bogacka et al. (2008) calculated the sampling windows based on the equivalence theorem for D-optimality
hich makes the widths of the windows related to the parameter sensitivities.
This paper is organized as follows. Section 2 gives a brief introduction of the mean–covariance models and the

echnique to characterize missingness. Section 3 proposes the optimality criterion and shows the superiority about the
ymmetrized design. Section 4 discusses the sampling windows and gives the algorithm to search it. Section 5 considers
ifferent missing probabilities and shows some simulation studies to compare different kinds of designs. The optimal
indow widths for certain target efficiencies are also obtained. Section 6 applies the proposed criterion to a real dataset.
ome conclusions and discussions are given in Section 7. The proofs of the propositions and theorems are all given
n Appendix A.

. Preliminaries based on mean–covariance models

Like Ouwens et al. (2002), we consider designs where all subjects are measured at the same time points, say (t1, . . . , tn).
Under a criterion, the optimal time allocation is denoted by dro = (t∗1 , t

∗

2 , . . . , t
∗
n ). That means the numbers of the repeated

measurements for all the subjects are the same, say n. If there is no missing data, the complete data is balanced. The
covariance matrices of the responses are assumed to be the same for all the subjects. For coherence, we introduce the
mean–covariance models for the balanced longitudinal data, as discussed in Pourahmadi (2000). Let y i = (yi1, yi2, . . . , yin)′
e an n×1 stacked vector of n responses made typically at times t1, t2, . . . , tn for the ith subject, i = 1, . . . ,m. It is assumed

that y i ∼ Nn(µi,Σ) where µi = (µi1, µi2, . . . , µin)′ and Σ = (σij) are the n × 1 mean vector and the n × n covariance
matrix of y i respectively. Without loss of generality, the matrix Σ is assumed to be positive definite.

Pourahmadi (1999) showed that the modified Cholesky decomposition of Σ−1 offers a simple unconstrained and
statistically meaningful reparameterization of the covariance matrix. In fact, there exist a unique lower triangular matrix
T with 1’s as diagonal entries and a unique diagonal matrix D with positive diagonals such that Σ−1

= T ′D−1T .
This decomposition has a simple statistical interpretation. The below-diagonal entries of T are the negatives of the
autoregressive coefficients φjg in ŷij = µij +

∑j−1
g=1 φjg (yig − µig ), the linear least-squares predictor of yij based on its

predecessors yi(j−1), . . . , yi1. In other words, φj = (φj1, . . . , φj(j−1))′ minimizes E(ϵij −
∑j−1

g=1 cgϵig )
2 with respect to the
cg ’s where ϵik = yik − µik, k = 1, . . . , j. The diagonal entries of D are the prediction error (innovation) variances
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σ 2
j = var(yij − ŷij), i = 1, . . . ,m, j = 1, . . . , n. Since φjg and log σ 2

j are unconstrained, they may be further modeled
y covariates. For 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ g ≤ j − 1, Pourahmadi (2000) considered the mean–covariance models

µij = x′

ijβ, log σ 2
j = z ′

jλ, φjg = z ′

jgγ, (1)

where xij is a r ×1 vector of covariates which may contain baseline covariates, polynomials of time and their interactions
as well, z j and z jg are d × 1 and q × 1 vectors of polynomials of time, β, λ and γ are called mean parameter, variance
parameter and correlation parameter, respectively. For example, when xij contains covariates sex, age and polynomials of
time, they may take the forms as follows,

xij = (1, sexi, agei, tj , . . . , t r−3
j )′,

z j = (1, tj , . . . , td−1
j )′,

z jg = (1, (tj − tg ) , . . . , (tj − tg )q−1)′.

Let θ = (β′, λ′, γ ′)′ = (β′, α′)′. The Fisher information matrix can be obtained as (Pourahmadi, 2000; Ye and Pan, 2006)

Iθ(n, t1, . . . , tn,m, α) =

⎛⎝∑m
i=1 X

′

iΣ
−1X i

m
2 Z

′Z
mW

⎞⎠ ,

here X i = (xi1, xi2, . . . , xin)′, Z = (z1, z2, . . . , zn)′ and W =
∑n

j=1 σ−2
j (
∑j−1

k=1
∑j−1

l=1 σklz jkz ′

jl). The Fisher information
atrix depends on α through Σ implicitly. Moreover, under some regularity conditions, Pourahmadi (2000) showed

hat I−1
θ (n, t1, . . . , tn,m, α0) is the asymptotic covariance matrix of the MLE θ̂ where α0 is the true value of α. The

lock-diagonal form of Iθ(n, t1, . . . , tn,m, α) implies that β̂, λ̂ and γ̂ are asymptotically independent.
Due to the complexity of the form of Iθ(n, t1, . . . , tn,m, α), it is not easy to derive the optimal design based on the

eneral equivalence theorem, since the direction derivatives of the criteria based on Iθ(n, t1, . . . , tn,m, α), such as A-
ptimality criterion and D-optimality criterion, are difficult to derive. In the following, we focus on exact designs. Let the
esign space be ∆ and τ = (t1, . . . , tn) ∈ ∆ with ti ∈ [−T , T ], i = 1, . . . , n. Our goal is to arrange a design schedule, such
hat the estimations of the parameters in models (1) are as accurate as possible in the presence of missingness. Denote
he probability of missing the observation at time point t for subject i by pti and let p =

{
pti , i = 1, . . . ,m, t ∈ [−T , T ]

}
. As

iscussed in Section 1, for any i and t , if pti is independent of the time points and other data, no matter whether observed,
he missing mechanism is MCAR. If pti only relies on the time points or other observed data, it is MAR. If pti depends on the
nobserved data, it is NMAR. Moreover, we assume that the missingness of each subject is independent of other subjects.
Inspired by Herzberg and Andrews (1976), for a design τ ∈ ∆, we add the 0-1 random variables hij (resp. hijk) to the

isher information matrix Iθ(n, τ ,m, α) to characterize the situation where the observation at tj (resp. tj or tk) may be
missing, j, k = 1, . . . , n and j ̸= k, i.e.,

hij =

{
0 with probability p

tj
i ,

1 with probability 1 − p
tj
i ,

hijk =

{
0 with probability p

tj
i + ptki − p

tj
i p

tk
i ,

1 with probability (1 − p
tj
i )(1 − ptki ).

Let H i = diag(hi1, hi2, . . . , hin), 1 ≤ i ≤ m. We consider a variant of Iθ(n, τ ,m, α),

IHθ (n, τ ,m, α) =

⎛⎝∑m
i=1 X

′

iH iΣ
−1H iX i

1
2

∑m
i=1 Z

′H iZ ∑m
i=1 W

H
i

⎞⎠ ,

where WH
i =

∑n
j=1 σ−2

j (
∑j−1

k=1
∑j−1

l=1 σklhijkhijlz jkz ′

jl). Thus IHθ (n, τ ,m, α) is a random matrix with its expectation as

E(IHθ (n, τ ,m, α)) =

⎛⎝∑m
i=1 E(X

′

iH iΣ
−1H iX i)

1
2

∑m
i=1 E(Z

′H iZ) ∑m
i=1 E(W

H
i )

⎞⎠ . (2)

We shall obtain the explicit expressions of E(IHθ (n, τ ,m, α)) for different missing patterns. Let Ω = {1, 2, . . . , n} and
ΩJ = {J, J + 1, . . . , n}. It is clear that Ω1 = Ω and ΩJ = ∅ when J ≥ n + 1. For any subset ω ⊆ Ω , M (−ω) (resp.
M (−ω)) represents the submatrix of M by removing its rows (resp. both rows and columns) indexed by ω. For monotone
missingness, once a missingness occurs, all the subsequent observations are missing. That is, the condition hiJ = 0 implies
hij = 0, j > J for any J ∈ Ω . There are only n+1 possible values of the matrix H i characterizing the missingness of subject
i. Thus the missing probability pti discussed above is a conditional probability,{

pt1i = p(hi1 = 0),
p
tJ

= p(h = 0 | h = · · · = h = 1), J ∈ Ω ,
i iJ i1 i(J−1) 2
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and the joint probabilities of (hi1, . . . , hin) are{
Um
i (J − 1) ≜ p(hi1 = 1, . . . , hi(J−1) = 1, hiJ = 0, . . . , hin = 0) = p

tJ
i
∏J−1

v=1(1 − ptvi ), J ∈ Ω,

Um
i (n) ≜ p(hi1 = · · · = hin = 1) =

∏n
v=1(1 − ptvi ).

By convention, we have
∏0

v=1 pv = 1 and
∑0

v=1 pv = 0, where pv can be any real number or matrix. For monotone
missingness, the explicit expressions of the diagonal blocks of E(IHθ (n, τ ,m, α)) in (2) are given as follows,

E(X ′

iH iΣ
−1H iX i) =

n+1∑
J=1

Um
i (J − 1)(X i(−ΩJ ))

′
(
Σ(−ΩJ )

)−1
(X i(−ΩJ )),

E(Z ′H iZ) =

n+1∑
J=1

Um
i (J − 1)(Z (−ΩJ ))

′(Z (−ΩJ )),

E(WH
i ) =

n+1∑
J=1

Um
i (J − 1)

J−1∑
j=1

σ−2
j

j−1∑
k=1

j−1∑
l=1

σklz jkz ′

jl.

For nonmonotone missingness, we assume that the missingness of the observation for any time point does not affect
others. Thus, there are 2n possible values of the matrix H i and p

tj
i = p(hij = 0), j = 1, . . . , n. The joint probabilities of

(hi1, . . . , hin) are

p(hi1 = i1, . . . , hin = in) =

n∏
j=1

p(hij = ij), ij ∈ {0, 1}.

For nonmonotone missingness, the corresponding explicit expressions of the diagonal blocks of E(IHθ (n, τ ,m, α)) in (2) are

E(X ′

iH iΣ
−1H iX i) =

n∏
j=1

(1 − p
tj
i )X

′

iΣ
−1X i +

n∑
j1=1

p
tj1
i

∏
j∈Ω\{j1}

(1 − p
tj
i )(X i(−j1))

′
(
Σ(−j1)

)−1
(X i(−j1))+

n∑
j1<j2

p
tj1
i p

tj2
i

∏
j∈Ω\{j1,j2}

(1 − p
tj
i )(X i(−{j1,j2}))′

(
Σ(−{j1,j2}))−1

(X i(−{j1,j2})) + · · · ,

E(Z ′H iZ) =

n∏
j=1

(1 − p
tj
i )Z

′Z +

n∑
j1=1

p
tj1
i

∏
j∈Ω\{j1}

(1 − p
tj
i )(Z (−j1))

′(Z (−j1))+

n∑
j1<j2

p
tj1
i p

tj2
i

∏
j∈Ω\{j1,j2}

(1 − p
tj
i )(Z (−{j1,j2}))′(Z (−{j1,j2})) + · · ·

=

n∑
j=1

(1 − p
tj
i )z jz

′

j,

E(WH
i ) =

n∏
j=1

(1 − p
tj
i )

(
n∑

w=1

σ−2
w

w−1∑
k=1

w−1∑
l=1

σklzwkz ′

wl

)
+

n∑
j1=1

p
tj1
i

∏
j∈Ω\{j1}

(1 − p
tj
i )

⎛⎝ n∑
w ̸=j1

σ−2
w

w−1∑
k̸=j1

w−1∑
l̸=j1

σklzwkz ′

wl

⎞⎠+

n∑
j1<j2

p
tj1
i p

tj2
i

∏
j∈Ω\{j1,j2}

(1 − p
tj
i )

⎛⎝ n∑
w ̸=j1,j2

σ−2
w

w−1∑
k̸=j1,j2

w−1∑
l̸=j1,j2

σklzwkz ′

wl

⎞⎠+ · · ·

=

n∑
j=1

σ−2
j

⎛⎝ j−1∑
k=l

(1 − p
tj
i )(1 − ptki )σklz jkz ′

jl +

j−1∑
k̸=l

(1 − p
tj
i )(1 − ptki )(1 − ptli )σklz jkz ′

jl

⎞⎠ .

Hence for both monotone and nonmonotone missingness, the expectation E(IHθ (n, τ ,m, α)) incorporates all possible cases

of missingness. We shall propose the optimality criteria based on it in the following section.
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3. Optimality criteria for parameter estimation

Based on the explicit expression of E(IHθ (n, τ ,m, α)), we can regard its determinant, |E(IHθ (n, τ ,m, α))|, as a variant of
the regular D-optimality criterion which is robust to missing observations. Note that |E(IHθ (n, τ ,m, α))| still depends on
α = (λ′, γ ′)′ through the unknown marginal covariance matrix Σ. The prior information about α, is needed. Instead of
the local optimal design approach, which heavily depends on a good guess of the parameter to be estimated, we adopt
the Bayesian optimal design approach to protect for the parameter misspecification or uncertainty. Let Φ be the prior
parameter space of α. We propose the optimality criterion as

R0(n, τ ,m, p) =
1

|Φ|

∑
α∈Φ

|E(IHθ (n, τ ,m, α))|
1

r+d+q , (3)

where |Φ| is the cardinality of Φ and we take the (r + d+ q)th root of |E(IHθ (n, τ ,m, α))| to eliminate the influence of the
rder of the Fisher information matrix. Moreover, we consider the feasible region as Dn = {(t1, t2, . . . , tn) : −T < t1 <

2 < · · · < tn ≤ T , mini=1:(n−1){ti+1 − ti} ≥ ℓ}. The minimal interval of the n variables is required to be not less than ℓ

or practical application. A design dro = (t∗1 , t
∗

2 , . . . , t
∗
n ) is called an optimal design if it maximizes the R0-criterion in (3)

mong Dn. Hence this optimality criterion not only ensures the accuracy of parameter estimations from the perspective
f asymptotic variance, but also is robust against missing observations and parameter uncertainty.
Based on the proposed R0-criterion in (3), the optimal designs are derived numerically. Assume that the contained

aseline covariates are not changed with the considered time points. That is, for each subject and any τ1, τ2 ∈ ∆, the
alues of these baseline covariates under τ1 equal those under τ2. To reduce the amount of computational work, the
ollowing proposition is used which relates |E(IHθ (n, τ ,m, α))| under the design τ to that under its symmetric design τ̃ , a
esign obtained from τ by multiplying each time point by −1 in ∆.

roposition 1. Given a mean–covariance model, let α1 = (λ′

1, γ
′

1)
′ and α2 = (λ′

2, γ
′

2)
′ satisfy α2 = Aα1, where

=

(
A1

A2

)
, A1 and A2 are d × d and q × q diagonal matrices, respectively, with odd diagonal entries as 1 and even

iagonal entries as -1. If pti is origin-symmetric on [−T , T ] for any subject i, i = 1, . . . ,m, we have

|E(IHθ (n, τ ,m, α1))| = |E(IHθ (n, τ̃ ,m, α2))|. (4)

Based on Proposition 1, it τ ∗ maximizes |E(IHθ (n, τ ,m, α1))|, then τ̃ ∗ maximizes |E(IHθ (n, τ ,m, α2))| with α2 = Aα1. If
is symmetric, i.e. τ̃ = τ , then |E(IHθ (n, τ ,m, α1))| is equal to |E(IHθ (n, τ ,m, α2))|. Thereafter, we consider Φ such that for
ny α ∈ Φ , we have Aα ∈ Φ . The following theorem states that for any design we can find a better design according to
ymmetrization under R0-criterion.

heorem 1. Assume that pti is origin-symmetric on [−T , T ] for any subject i, i = 1, . . . ,m. For any design τ ∈ ∆, we have

R0(n, ξ ,m, p) ≥ R0(n, τ ,m, p),

here ξ = {(τ , 1
2 ), (τ̃ , 1

2 )} and τ̃ is the symmetric design of τ in ∆.

Theorem 1 is in the spirit of Ouwens et al. (2002) who however discussed the maximin designs only for the mean
stimation of the polynomial random slope model. We consider the Bayesian designs for both the mean and the covariance
atrix estimations in the presence of missingness. According to Theorem 1, based on a selected optimal design τ ∗, we can
btain a symmetrized optimal design where half of the subjects are measured according to τ ∗ and half of the subjects are
easured according to τ̃ ∗. Then this derived design is better than τ ∗ under R0-criterion. Further, if τ itself is a symmetric
esign, i.e. τ̃ = τ , we have ξ = τ . It provides a possible search direction to symmetric designs, which may lead to good
esigns.
Define

R1(n, τ ,m, p) =
1

|Φ|

∑
α∈Φ

E(|IHθ (n, τ ,m, α)|)
1

r+d+q , (5)

where the order of taking expectation and taking determinant is exchanged compared with R0-criterion. The form of taking
expectation for the determinant is used in the literature, e.g. Herzberg and Andrews (1976) and Zheng (2013). Both R0-
criterion and R1-criterion are feasible and the proposed R0-criterion may be computed more easily with less determinants.
For i = 0, 1, let τ ∗

i be an optimal design under Ri-criterion. Define effi(τ ) = Ri(n, τ ,m, p)/Ri(n, τ ∗

i ,m, p), i = 0, 1, as the
fficiency of τ under Ri-criterion and the gap function g(τ ) = R1(n, τ ,m, p)/R0(n, τ ,m, p). Actually, according to Lemma
in Zheng (2013), we can obtain that R1-efficiency eff1(τ ) could be bounded by eff0(τ )g(τ ).

roposition 2. For any design τ , we have R1(n, τ ,m, p) ≤ R0(n, τ ,m, p). Further, we have eff1(τ ) ≥ eff0(τ )g(τ ). In particular,
or any R -optimal design τ , we have eff (τ ) ≥ g(τ ).
0 1
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The proof of Proposition 2 can be referred to Zheng (2013) and we omit it here. By Proposition 2, we have g(τ ) ≤ 1
nd g(τ ∗

0 ) ≤ eff1(τ ∗

0 ). It means that if we could select a R0-optimal design, then the value of the gap function g evaluated
t this design serves as a lower bound of its R1-efficiency. When the missing probability is not large, the value of the gap
unction g would be close to unity. Thus the R0-optimal design could be highly efficient under R1-criterion.

For R0-criterion, we define the relative efficiency (RE) to compare the performance of the designs. Actually, the values
f n and m are not replaceable, e.g. n1 = 2n2 cannot be offset by m1 = m2/2, because of the within-subject correlation.
oubling up the number of time points for each subject does not double up the information, while doubling up the
umber of subjects indeed doubles up the amount of the information. Thus for any two designs η1 = (n, τ1,m1) and
2 = (n, τ2,m2) with the same number of repeated measurements, the RE are defined as

RE(η1, η2) =
m2

m1
·
R0(η1, p)
R0(η2, p)

,

here the term m2/m1 is used to eliminate the impact of the number of subjects.
The derivatives of R0-criterion are not easy to calculate. As a result, many optimization algorithms which need to

se derivatives are not applicable. Alternatively, we use the MSNTO algorithm proposed in Yi et al. (2021), which is a
equential algorithm for optimization and does not need the derivatives. It combines the SNTO algorithm (Fang and Wang,
994) with a transformation, denoted by h-transformation, to convert the points on the regular hypercube [0, 1]n to the

irregular region Dn. Thus MSNTO can be used to find the global maximum point of a continuous function over the closed,
bounded and irregular domain Dn. MSNTO scatters points on the domain using uniform design (Fang et al., 2018) coupled
with h-transformation. According to the R0-criterion value calculated on the uniform design points, we select the current
maximum point t . Let o = (o1, . . . , on) be the point on [0, 1]n with t = h(o). The domain is contracted to [a(w+1), b(w+1)

]

by a(w+1)
i = max(oi − γ0c

(w)
i , 0), b(w+1)

i = min(oi + γ0c
(w)
i , 1), i = 1, . . . , n, where a(w+1)

= (a(w+1)
1 , . . . , a(w+1)

n ),
b(w+1)

= (b(w+1)
1 , . . . , b(w+1)

n ), c(w)
i = (b(w)

i −a(w)
i )/2 and γ0 is a predefined contraction ratio. Then we obtain the subdomain

of Dn which corresponds to h([a(w+1), b(w+1)
]). The same uniform design is used on the subdomain and it is further

contracted by the same way. The process is repeated until the volume of the domain is small enough. Moreover, if the
functions in p are all even functions, i.e. origin-symmetric, we can restrict the design space to the symmetric designs. It
may bring designs with good performance and can reduce the computation complexity.

4. R0-Efficient sampling windows

Section 3 discussed the search of the design dro = (t∗1 , t
∗

2 , . . . , t
∗
n ) which achieved the precision for parameter

estimation and the robustness to missing observations and parameter misspecification. However, in clinical experiments,
if the patients are in an uncontrolled environment, accurate timing for taking samples is problematic. Even though there
is no missingness, there may be some reasons for delays, caused by the patients or the clinic personnel. Then an optimal
design in Section 3 can be much less informative for the purpose when it was set up. For this purpose, we consider the
approach of sampling windows to allow the flexibility in the data collection and guarantee a certain efficiency for the
estimates of the parameters.

Since we do not know the specific impact of each optimal time point on the estimates of the parameters in advance,
we treat every point equally and set the width of each window the same. We define the sampling windows as

ℑκ = [t∗1 , t
∗

1 + κ] × [t∗2 , t
∗

2 + κ] · · · × [t∗n , t
∗

n + κ],

where any randomly sampled time point on [t∗i , t
∗

i + κ] is uniformly distributed for 1 ≤ i ≤ n. For any design
τ = (t1, . . . , tn) ∈ ℑκ , we can calculate the R0-efficiency eff0(τ ). Our goal is to select the optimal window width κ∗,
such that the minimal R0-efficiency of all the designs on ℑκ∗ is equal to a given R0-efficiency level Eff0, where an allowed
loss of efficiency is 1 − Eff0. That is, for all the subjects, the ℑκ∗ allows the missingness and the measurements not to
be taken at the precisely original time points, which still guarantees a certain estimation effects of parameters. It can
be regarded as a robust treatment to both missingness and time disturbance. Then ℑκ∗ is called R0-efficient sampling
windows.

Similar to the idea of the MSNTO, we can also apply the uniform designs to search the global minimal R0-efficiency on
ℑκ . It is also worth noting that we should add constraints to avoid the sampling windows overlapping, i.e. t∗i + κ > t∗i+1,
since if a measurement is taken at the time point ti from the sampling window [t∗i , t

∗

i + κ] and ti > t∗i+1, it is impossible
to take the next measurement at any time point in the interval [t∗i+1, ti] from the window [t∗i+1, t

∗

i+1 + κ]. Fortunately,
under suitable settings of the parameters T , ℓ and Eff0, it can be avoided. Here we give the general steps of the algorithm
to search the optimal window width κ∗ as follows:

tep 1 Using MSNTO to search the optimal design dro on Dn under R0-criterion and construct the sampling windows ℑκ ;
tep 2 Set the threshold δ, the iteration step size ζ and the target efficiency Eff0. Choose an initial value κ = κ0(< ℓ);
tep 3 Calculate the minimal R -efficiency eff by constructing a uniform design on ℑ ;
0 0min κ
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tep 4 If |eff0min − Eff0| < δ, stop, else,

(a) if eff0min − Eff0 > δ, increase κ (κ = κ + ζ ) satisfying κ < ℓ and go to Step 3,
(b) if eff0min − Eff0 < (−δ), decrease κ (κ = κ − ζ ) and go to Step 3;

In Step 2, one can randomly choose the initial value κ0 from the interval (0, ℓ) first and run the algorithm. If the number
f iterations is considered to be large, we can adjust κ0 according to the change trend of κ and rerun the algorithm. Hence,
his algorithm can be accelerated in the right direction through a rough exploration of κ0. The choice of the target efficiency
ff0 decides for the width of the windows: larger Eff0 will lead to narrower windows and smaller Eff0 will lead to wider
indows.

. Simulation studies

We use polynomials of time to model the mean, the innovation variances and the autoregressive coefficients, i.e. the
ovariates in the mean–covariance models take the forms

xij = (1, tj, . . . , t r−1
j )′, z j = (1, tj, . . . , td−1

j )′, z jg = (1, (tj − tg ), . . . , (tj − tg )q−1)′. (6)

ertainly, xij can also take other form, which is decided by practical analysis. To illustrate, we consider the case of
onmonotone missingness. We fix the number of subjects m = 100 and the number of the repeated measurements
= 8. We also set the maximal time point T = 15, the number of the parameters in models (1)r = d = q = 3 and the
inimal time interval ℓ = 2. We assume the prior ranges of both λ and γ are [−1, 1] × [−0.1, 0.1] × [−0.01, 0.01]. Any

andomly sampled point in this cuboid is uniformly distributed. In each simulation, we assume that each subject shares
he same missing probability pti = pt , i = 1, . . . ,m and consider different kinds of it. Then we compare the performance of
he optimal design under R0-criterion (dro), the optimal design without considering missingness (do) and the equidistant
esign (dequi). When pt is origin-symmetric on [−T , T ], we also add the comparison with the symmetric optimal design
drosym) and the symmetrized optimal design (drosym2). The former is obtained based on the symmetric design space and
he latter is derived from the optimal design by symmetrization as in Theorem 1.

We first consider two different origin-symmetric forms of pt . For each case, we discuss different values of the parameter
n it,

• Case 1 :

pt = a, t ∈ [−T , T ],

(i) a = 0.2, (ii) a = 0.4, (iii) a = 0.6, (iv) a = 0.8;
• Case 2 :

pt = b
⏐⏐⏐⏐cos(3π

2T
t
)⏐⏐⏐⏐ , t ∈ [−T , T ],

(i) b = 0.2, (ii) b = 0.4, (iii) b = 0.6, (iv) b = 0.8.

The results are shown in Fig. 1. The four subplots in the first row depict the results of Case 1 and the other four subplots
are related to Case 2. The plots of pt ’s for the two cases are shown in Fig. 1(a)–(b). The optimal design d1ro (resp. d2ro) and
symmetric optimal design d1rosym (resp. d2rosym) are drawn in Fig. 1(c) (resp. Fig. 1(d)). The time points at both ends are
nearly the same and the time intervals are exactly ℓ. For each a of Case 1, d1rosym is almost the same due to the invariance
of the missing probability. For Case 2, compared with do which does not consider the missingness, d2ro and d2rosym both
avoid the point with high missing probability and choose the point with acceptable missing probability. For Case 1, the
logarithm of the R0-criterion values (log R0-values) are 11.9661, 11.4982, 10.8610, 9.7373 for d1ro and 11.9739, 11.5103,
10.8204, 9.6876 for d1rosym in turn. For Case 2, the log R0-values are 12.1411, 12.0663, 11.9188, 11.7905 for d2ro and 12.1450,
12.0796, 11.9953, 11.8868 for d2rosym in turn. For both cases, it occurs that the log R0-value of the symmetric optimal design
is larger than that of the optimal design. The reason may be that with the same sized uniform design used in MSNTO,
the precision of the searching is higher when the searching space is restricted to the symmetric designs. Moreover, we
calculate the RE’s of d1ro and dequi, d1ro and do for Case 1 and RE’s of d2ro and dequi, d2ro and do for Case 2 in Fig. 1(e)–(f). Both
of them show that the optimal design is much better than the optimal design without considering missingness and the
equidistant design. And the optimal design without considering missingness is still better than the equidistant design in
the presence of missingness. Also, we compare the performance of d1ro, d

1
rosym, d

1
rosym2 and d2ro, d

2
rosym, d

2
rosym2 for the two cases

through RE in Fig. 1(g)–(h) respectively. RE(d1rosym, d1ro) and RE(d2rosym, d2ro) are around 1 which implies that the performance
of the two kinds of designs is similar. Moreover, RE(d1rosym2, d

1
ro), RE(d

1
rosym2, d

1
rosym), RE(d

2
rosym2, d

2
ro) and RE(d2rosym2, d

2
rosym)

are always close to or larger than 2. It illustrates that the trick of symmetrization is feasible and effective.
Next, we consider the cases in which pt increases with the time t strictly. Similarly, we also discuss different settings
of the parameters in them, i.e.
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Fig. 1. (a)–(b): the pt ’s in Case 1 and Case 2; (c)–(d): the optimal designs d1ro , d
2
ro with symbol ‘∗’ and the symmetric optimal designs d1rosym , d

2
rosym

with symbol ‘△’. Case (0) corresponds to the design do; (e)–(f): the RE’s of d1ro and dequi , d1ro and do , d2ro and dequi , d2ro and do; (g)–(h): the RE’s of any
two designs in d1ro , d

1
rosym , d

1
rosym2 and d2ro , d

2
rosym , d

2
rosym2 .

Table 1
The gap function g for the selected optimal designs.
Case d1ro d1rosym d2ro d2rosym d3ro d4ro
(i) 0.9770 0.9786 0.9900 0.9946 0.9215 0.9225
(ii) 0.9272 0.9210 0.9736 0.9640 0.8941 0.8614
(iii) 0.8460 0.8454 0.9493 0.9365 0.8413 0.7969
(iv) 0.5835 0.5868 0.9069 0.9036 0.7949 0.7223

• Case 3 :

pt =
f − e
900

t2 +
f − e
30

t +
3e + f

4
, t ∈ [−T , T ],

(i) e = 0.2, f = 0.5, (ii) e = 0.2, f = 0.6, (iii) e = 0.2, f = 0.7, (iv) e = 0.2, f = 0.8;
• Case 4 :

pt = −
f − e
900

t2 +
f − e
30

t +
e + 3f

4
, t ∈ [−T , T ],

(i) e = 0.2, f = 0.5, (ii) e = 0.2, f = 0.6, (iii) e = 0.2, f = 0.7, (iv) e = 0.2, f = 0.8;

where e and f are the missing probabilities at the time points −T and T , i.e., p−T
= e and pT = f .

The results are shown in Fig. 2. Fig. 2(a)–(b) show the plots of pt ’s for the two cases. Fig. 2(c)–(d) draw the optimal
design d3ro for Case 3 and d4ro for Case 4. Comparing with do, it seems that d3ro and d4ro prefer the time points at both ends.
However, for both cases, it can be seen that the time points move to the left with the increase of f since they all tend to
choose the time point with smaller missing probability and thus guarantee the robustness to missingness. The trend is
more obvious for Case 4 since the change is faster when the missing probability is small. The log R0-values respectively
are 11.6229, 11.4827, 11.3156, 11.0844 for Case 3 and 11.4786, 11.2499, 10.9785, 10.6260 for Case 4 in turn. Similarly,
the value becomes smaller with the increase of the missing probability for both cases. Finally, the RE’s of d3ro and dequi, d3ro
and do for Case 3 and RE’s of d4ro and dequi, d4ro and do for Case 4 are shown in Fig. 2(e)–(f), they are always larger than 1.
It implies that the performance of the optimal designs under R0-criterion is always better than the other two designs.

Further, based on the discussion in Proposition 2, we also calculate the values of the gap function g(τ ) = R1(n, τ ,m, p)/
R (n, τ ,m, p) for the optimal designs in Cases 1–4 where R -criterion is defined in (5). The results are shown in Table 1.
0 1
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Fig. 2. (a)–(b): the pt s in Case 3 and Case 4; (c)–(d): the optimal designs d3ro and d4ro . Case (0) corresponds to the design do; (e)–(f): the REs of d3ro
and dequi , d3ro and do , d4ro and dequi , d4ro and do .

Table 2
The biases and standard errors of the estimators of parameters based on d2ro, do, dβ and dequi with missing probability as Case 2(iv).

Design det_OC se_bta se_lamb se_gam bia_bta bia_lamb bia_gam

d2ro 2.2482e−38 2.0308e−05 8.4509e−07 3.0674e−06 0.0016 0.9843 0.4915
do 8.5898e−35 1.6041e−04 1.9769e−06 1.0986e−05 0.0386 2.5183 0.4914
dβ 4.7125e−34 1.6412e−04 1.6480e−06 4.0670e−05 0.0137 2.1905 1.0957
dequi 4.2736e−33 9.3022e−05 2.7225e−06 5.3664e−05 0.0078 1.9890 1.2115

For each case, when the missing probability decreases, the gap function increases and thus the optimal design is more
effective under R1-criterion. Moreover, we reduce the value of the number of repeated measurement n and select the
ptimal designs under R0-criterion. We calculate the gap function again based on the optimal designs with reduced n. The
alues of the gap function become larger, e.g. when n = 5, most of them are larger than 90%. Hence, when the missing
robability is not large or the number of the repeated measurement is small, the optimal design under R0-criterion can
e an alternative with good performance under R1-criterion.
In order to investigate the properties of different designs for the parameter estimations of the mean–covariance models,

e also conduct some simulation studies. To illustrate, we compare the optimal design d2ro with missing probability as
ase 2(iv) with do, dequi and dβ . Here dβ is obtained by the previous D-optimality criterion which only considers the
ean and does not take the missingness into account. Assume that the true parameters βt = (50, 0.3, 0.1)′, λt =

0.8268, −0.0675, 0.0006)′ and γ t = (0.8896, 0.0066, −0.0054)′, where λt and γ t are chosen from the prior samples. We
arry out 100 repetitions to generate the observations based on each design. With these generated unbalanced longitudinal
ata y i, i = 1, . . . ,m, we use the R package jmcm to estimate the parameters in the mean–covariance models with MLE
ethod and show the results in Table 2, where (i) det_OC denotes for the determinant of the observed covariance matrix
f the estimators (the generalized variance); (ii) se_bta, se_lamb and se_gam denote for the products of the elements of the
tandard errors for the estimators β̂, λ̂ and γ̂ respectively; (iii) bia_bta, bia_lamb and bia_gam denote for the summations
f the elements of the differences between the true values and the averages for the estimators β̂, λ̂ and γ̂ respectively. As
hown in Table 2, the optimality of the generalized variance of the estimators based on d2ro is guaranteed by R0-criterion.
ll the estimation results based on d2ro are also smaller than those based on other designs. do and dβ are still better than
equi in terms of the results about the variation, but in the presence of missingness, the optimal design without considering
issingness is not optimal any more. Also, dβ cannot derive good estimation even for β any more. Thus our proposed
0-criterion is more valid and effective than previous criteria.
Finally, based on the obtained d4ro with missing probability as Case 4(i)-(iv), we search the optimal window width κ∗

iscussed in Section 4. Set the threshold δ = 10−3 and iteration step size ζ = 10−2. We construct the uniform designs on
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Table 3
The optimal window width κ∗ for d4ro with missing probability as Case 4.
Case Eff0

0.95 0.90 0.85 0.80

(i) 0.42 0.90 1.41 2.00
(ii) 0.38 0.79 1.22 1.70
(iii) 0.34 0.70 1.08 1.50
(iv) 0.30 0.61 0.95 1.31

ℑκ by good lattice point method with a power generator (Korobov, 1959) under mixture discrepancy (Zhou et al., 2013), a
easure of uniformity of a design. In Table 3, we show the κ∗ for different values of Eff0, i.e. Eff0 = 0.95, 0.90, 0.85, 0.80.

In general, whatever the missing probability is, the κ∗ increases with the decrease of Eff0. Moreover, given Eff0, the κ∗

tends to be smaller with the increase of the missing probability, which implies that larger missing probability leads to
faster decline in efficiency. The κ∗ for a specific Eff0 can also serve as a guidance for the choice of the initial value κ0 with
smaller or larger Eff0 to save the search time.

6. Real data illustration

In this section, we apply the proposed R0-criterion to the fruit fly mortality (FFM) data (Zimmerman and Núñez Antón,
2010) for a follow-up study. The FFM data consist of age-specific mortality measurements from 112 cohorts (subjects) of
Drosophila melanogaster (a common fruit fly). Mortality measurements were obtained by replicating 56 recombinant in-
bred lines to get 500 to 1000 fruit flies for each cohort. Everyday, dead flies were counted and removed for each cohort, and
these counts were pooled into 11 five-day intervals. The raw mortality rate was recorded as − log(N(t + 1)/N(t)), where
N(t) is the number of flies in the cohort living at the beginning of time interval t(t = 1, 2, . . . , 11). To make the responses
more normally distributed, these final rawmortality rates were log-transformed. For unknown reasons, approximately 22%
of the data were missing nonmonotonically. Specifically, the missing rates (the number of missing cohorts/the number of
the total cohorts) at the recorded time points, respectively, were 0.2411, 0.2054, 0.1607, 0.1250, 0.0804, 0.0625, 0.1071,
0.2411, 0.3482, 0.4018, 0.5000. So the missing rate is quite different at different time points. Larger missing rate leads to
less accuracy in the subsequent modeling and statistical inference. Thus, if a follow-up study is needed and this missing
case is considered to be crucial, the original equidistant time points may be not a desirable design. Instead, we can adopt
the robust optimal design under the proposed R0-criterion.

Following Garcia et al. (2012) and Huang et al. (2012), the mean–covariance models are appropriate for analyzing the
FFM data and the third-degree polynomials in time are suitable for modeling µij, log(σ 2

j ) and φjg , where the forms xij, z j and
z jg are specified by (6) with r = d = q = 4. Here we re-analyze the data using the mean–covariance models with the origi-
nal times scaled to −5, −4, . . . , 4, 5. The MLEs are θ̂0 = (β̂

′

0, λ̂
′

0, γ̂
′

0)
′, where β̂0 = (−1.6700, 0.6313, −0.0152, −0.0122)′,

λ̂0 = (−0.3286, −0.3135, −2.3112e−4, 8.6461e−3)′ and γ̂0 = (1.1321, −0.7265, 0.1401, −8.2571e−3)′. Based on
he MLEs, we construct the prior space Φ with λ ∈ [−0.4, 0.4] × [−0.4, 0.4] × {−2.3112e−4} × {8.6461e−3}, γ ∈

[−1.3, 1.3] × [−1, 1] × [−0.2, 0.2] × {−8.2571e−3}, and any randomly sampled prior is independently and uniformly
istributed. For the robust optimal design selection, we approximate the missing probabilities by fitting the missing rates
ith a quadratic polynomial, i.e., pt = 0.0114t2 + 0.0264t + 0.1113. Let n = 11,m = 100, ℓ = 0.3 and T = 5. Similar to
ection 5, we also compare the performance of the optimal design under R0-criterion (dFFMro ), the optimal design without
onsidering missingness (dFFMo ), the optimal design which only considers the mean and does not take the missingness into
ccount (dFFMβ ) and the equidistant design (dFFMequi), by RE and the parameter estimation for demonstrating the validity of

the R0-criterion. Those optimal designs are all found by the MSNTO algorithm.
In Fig. 3, we show the approximate missing probability and the diagrams for dFFMro , dFFMo , dFFMβ and dFFMequi . It can be seen

that dFFMro yields the strongest sensitivity to avoid the locations with high missing probability. Similar to Figs. 1 and 2,
those selected designs are inclined to contain the endpoints, even though the missing probabilities are relatively large
at those points. The RE’s between dFFMro and other three designs are RE(dFFMro , dFFMo ) = 1.1382, RE(dFFMro , dFFMβ ) = 1.1989
and RE(dFFMro , dFFMequi) = 2.9912, respectively. It shows that the optimal design under the R0-criterion dFFMro has the best
performance and the equidistant design dFFMequi shows the worst performance. Let the threshold δ = 0.0015 and the
teration step size ζ = 0.005. To deal with the operational errors, by the algorithm in Section 4, we also obtain the
ptimal windows κ∗

= 0.05, 0.085, 0.12, 0.165 for Eff0 = 0.97, 0.95, 0.93, 0.91, respectively. Assume that the true
parameters θt = (β′

t , λ
′

t , γ
′
t )

′
= (β̂

′

0, λ̂
′

0, γ̂
′

0)
′. The true mean and true covariance matrix are obtained by µt = Xβt

and Σt = Σt (θt ) = T−1
t Dt (T ′

t )
−1. Once the model structure and design are given, the true mean and covariance matrix

are also determined. Then, we carry out 100 repetitions to generate the observations based on each design, where the
missing probability is embedded in the data generation. With the unbalanced data, we also use the R package jmcm to
estimate the parameters in the mean–covariance models and the results are shown in Table 4. In terms of the generalized
variance of the estimators, dFFMro gives the best estimations for these parameters. Except for the estimation of β, all the
ther results based on dFFMro are better than those based on other designs. Hence, the data illustration also shows that in
he presence of missingness, the robust optimal design based on the R0-criterion outperforms those designs which do not
ake the missingness into account.
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Fig. 3. (a): the curve depicts the missing probability and ‘o’ denotes for the missing rate; (b): the diagrams for dFFMro , dFFMo , dFFMβ and dFFMequi .

Table 4
The biases and standard errors of the estimators of parameters based on dFFMro , dFFMo , dFFMβ and dFFMequi . The evaluation indexes are the same as those in
Table 2.
Design det_OC se_bta se_lamb se_gam bia_bta bia_lamb bia_gam

dFFMro 3.5475e−54 6.5910e−08 4.7577e−08 1.2015e−08 0.0349 0.1197 0.0661
dFFMo 2.9408e−53 4.3243e−08 2.3587e−07 1.6311e−08 0.0144 0.6509 0.2165
dFFMβ 3.8769e−52 4.7594e−08 6.6021e−08 4.9915e−08 0.0245 0.1503 0.0846
dFFMequi 3.1317e−51 8.5523e−08 7.9240e−08 1.2273e−07 0.0305 0.2748 0.4789

7. Conclusion and discussion

In this paper, we propose a novel criterion to select the optimal designs for the mean–covariance models which is
obust against the missingness, parameter uncertainty and operational errors. We take the possible cases of missingness
nto account so that even though not every measurement can be obtained, the mean and the covariance matrix can still
e estimated as accurately as possible. We prove that the trick of symmetrization can bring better performance under
he proposed criterion if the missing probability is origin-symmetric. We also discuss the sampling windows to guarantee
certain efficiency in the presence of operational errors. We conduct some simulation studies and a real data analysis
ased on the FFM data which consider different missing probabilities. The time points always avoid the locations with
igh missing probability and select those with acceptable one instead. In terms of the relative efficiency, the optimal
esigns under the proposed criterion perform better than the optimal designs without considering missingness and the
quidistant designs. When the missing probability is origin-symmetric, the symmetrized optimal designs perform the
est and the symmetric optimal designs are similar to the general optimal designs. That is, symmetric designs can not
nly reduce the complexity of the algorithm, but also bring good performance. Moreover, we also compare the estimation
ffects of different designs. It is shown that the results based on the optimal design are more accurate in terms of the
iases and the standard errors of the estimators. In the presence of missingness, our proposed criterion is more effective
ompared with the previous criteria which just consider the mean and (/or) do not take the missingness into account.
Additionally, in the literature, there are several more valid and more efficient modeling methods to handle the missing

ata, such as multiple imputation and other likelihood-based methods. But the corresponding asymptotic covariance
atrix of the estimates of the parameters would be more complicated and it may be more difficult to deal with. For
xample, for some likelihood-based methods, the EM algorithm may be used to estimate the parameters, in which the
symptotic covariance matrix of the estimators of the parameters, i.e. the inverse of the observed information matrix, is
ore complex and may rely on the values of the estimators. It is beyond the scope of the current paper but worthy for

urther investigations.
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Appendix A

Proof of Proposition 1. Without loss of generality, we consider that for all subjects, the model matrices for the mean
vector are all the same only containing polynomials of time. Consider two designs τ and τ̃ . Σ (= T−1D(T ′)−1), H i, WH

i ,
X , Z , z jg correspond to τ and Σ̃ (= T̃

−1
D̃(T̃

′

)−1), H̃ i, W̃
H
i , X̃ , Z̃ , z̃ jg correspond to τ̃ . The entries of D and D̃ are denoted

y σ 2
j and σ̃ 2

j respectively, which satisfy log σ 2
j = z ′

jλ1 and log σ̃ 2
j = z̃ ′

jλ2. The entries of T and T̃ are denoted by φjg and
˜ jg respectively, which satisfy φjg = z ′

jgγ1 and φ̃jg = z̃ ′

jgγ2. If the designs are mutually symmetric, i.e. τ̃ = −τ , we have
˜ j = A1z j and z̃ jg = A2z jg . Then under the condition λ2 = A1λ1 and γ2 = A2γ1, we have log σ̃ 2

j = log σ 2
j , φ̃jg = φjg

nd thus Σ̃ = Σ. Let A3 be a r × r diagonal matrix with odd diagonal entries being 1 and even being -1. We also have
˜ (−ω)

= Σ(−ω), X̃ (−ω) = X (−ω)A3, Z̃ (−ω) = Z (−ω)A1 for any ω ⊆ Ω . Further, if pti is origin-symmetric for any subject i,
= 1, . . . ,m, then for both monotone and nonmonotone missingness,

m∑
i=1

E(X̃
′

iH̃ iΣ̃
−1H̃ iX̃ i) = A3

m∑
i=1

E(X ′

iH iΣ
−1H iX i)A3,

m∑
i=1

E(Z̃
′

H̃
2
i Z̃) = A1

m∑
i=1

E(Z ′H2
i Z)A1,

m∑
i=1

E(W̃
H
i ) = A2

m∑
i=1

E(WH
i )A2.

t follows immediately that Eq. (4) holds. If the model matrices for the mean vector also contain other baseline covariates
nd the interaction terms with time. According to the assumption, for each subject, the values of these baseline covariates
nder τ equal those under τ̃ . Then the corresponding A3 is still a diagonal matrix with entries as 1 or -1. It is easy to

show that Eq. (4) also holds with similar arguments and we omit it here.

Proof of Theorem 1. Let τ ∈ ∆. It follows from Proposition 1 that |E(IHθ (n, τ ,m, α1))| is equal to |E(IHθ (n, τ̃ ,m, α2))|. Thus,∑
α∈Φ |E(IHθ (n, τ ,m, α))|

1
r+d+q =

∑
α∈Φ |E(IHθ (n, τ̃ ,m, α))|

1
r+d+q . Consider the design ξ = {(τ , 1

2 ), (τ̃ , 1
2 )} for which half of

he subjects are measured according to τ and half of the subjects are measured according to τ̃ . It is obvious that ξ is
ymmetric. Then due to the fact that

|G + K |
1
s ≥ |G|

1
s + |K |

1
s

where G and K are positive definite matrices of order s, we have∑
α∈Φ

|E(IHθ (n, ξ ,m, α))|
1

r+d+q =

∑
α∈Φ

⏐⏐⏐⏐12E(IHθ (n, τ ,m, α)) +
1
2
E(IHθ (n, τ̃ ,m, α))

⏐⏐⏐⏐ 1
r+d+q

≥
1
2

∑
α∈Φ

|E(IHθ (n, τ ,m, α))|
1

r+d+q +
1
2

∑
α∈Φ

|E(IHθ (n, τ̃ ,m, α))|
1

r+d+q

=

∑
α∈Φ

|E(IHθ (n, τ ,m, α))|
1

r+d+q .

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2021.12.004.
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