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Abstract
Longitudinal data analysis has been very common in various fields. It is impor-
tant in longitudinal studies to choose appropriate numbers of subjects and
repeated measurements and allocation of time points as well. Therefore, exist-
ing studies proposed many criteria to select the optimal designs. However, most
of them focused on the precision of the mean estimation based on some spe-
cific models and certain structures of the covariance matrix. In this paper, we
focus on both themean and themarginal covariancematrix. Based on themean–
covariance models, it is shown that the trick of symmetrization can generate bet-
ter designs under a Bayesian D-optimality criterion over a given prior parameter
space. Then, we propose a novel criterion to select the optimal designs. The goal
of the proposed criterion is to make the estimates of both the mean vector and
the covariance matrix more accurate, and the total cost is as low as possible. Fur-
ther, we develop an algorithm to solve the corresponding optimization problem.
Based on the algorithm, the criterion is illustrated by an application to a real
dataset and some simulation studies. We show the superiority of the symmetric
optimal design and the symmetrized optimal design in terms of the relative effi-
ciency and parameter estimation. Moreover, we also demonstrate that the pro-
posed criterion is more effective than the previous criteria, and it is suitable for
both maximum likelihood estimation and restricted maximum likelihood esti-
mation procedures.

KEYWORDS
Bayesian, cost function, D-optimality criterion, sequential number-theoretic optimization
(SNTO)

1 INTRODUCTION

Longitudinal data are very common in practice, for example, the randomized controlled trials in health and medical
sciences, the quality control in industry and the growth curve analysis in biological and agriculture. In longitudinal data
analysis, measurements are taken from the same subject repeatedly over time. The responses between subjects may be
independent, but the repeated measurements within subjects are very likely to be correlated.
It is well known that the misspecification of the covariance structure may lead to a great loss of efficiency of the mean

parameter estimators. Also, if the longitudinal data contain certain missing values and/or are not normally distributed,
the mean parameter estimators may be biased when the covariance structure is misspecified (Daniels & Zhao, 2003).
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Thus, a good covariance modelling approach improves the statistical inference of the mean of interest. Furthermore, the
covariancematrix itself may be of scientific interest. Actually, the impact of the covariancemisspecification is of particular
concern to researchers conducting longitudinal randomized controlled trials where optimistic standard errors may lead
to over-reporting of beneficial intervention effects and vice versa (MacKenzie & Reeves, 2002). However, the issue is more
general, and these difficulties may occur whenever the covariance structure is misspecified. Thus many authors studied
how to model the mean and the covariance matrix for longitudinal data. The main difficulty in modelling the covariance
matrix is the constraint that it must be positive definite. Pourahmadi (2000) provided a convenient reparameterization of
the marginal covariance matrix and proposed the joint mean–covariance models for balanced longitudinal data, in which
the parameters were estimated by maximum likelihood estimation (MLE). This modelling method overcomes this diffi-
culty and changes the constrained problem to unconstrained and statistically meaningful parameter estimation. MacKen-
zie and Pan (2001) extended the work to model the dependence of this covariance structure on baseline covariates, time
and their interaction. Pan and MacKenzie (2003) used a BIC-based (Bayesian information criterion (BIC)) model selec-
tion criterion to identify the optimum degrees of the models. Ye and Pan (2006) considered the modelling of covariance
structures in generalized estimating equations (GEEs). To alleviate the problem of inefficient estimation and downward
bias in the variance estimates, Papageorgiou (2012) developed restricted maximum likelihood estimation (RMLE) for the
parameters in mean–covariance models.
From the perspective of experimental designs, it is well known that optimal designs of experiments are more efficient

when more knowledge about the underlying model is available. Based on those modelling methods, a natural problem is
to select the optimal designs, that is optimal numbers of repeated measurements and independent subjects and optimal
allocation of time points as well, to estimate the mean and the covariance matrix well. The same allocation of time points
for each subject is suitable in the selection process for practical application. Then the collected longitudinal data based
on the selected optimal designs will be balanced if there is no missing observation. Many studies discussed the modelling
methods for the balanced longitudinal data besides Pourahmadi (2000). Forcina (1992) discussed theMLEs of themarginal
covariance parameters. Gosho et al. (2011) proposed a criterion for selecting an appropriate correlation structure used in
the GEE approach for the balanced longitudinal data. Westgate (2014) proposed a novel criterion that utilized the trace of
the empirical covariance matrix to improve the selection approach.
However,most of the existing studies focused on the estimation precision of themean and few on the covariancematrix.

Ouwens et al. (2002) discussed the maximin D-optimal designs. They maximized the minimal relative efficiency, which
was defined on the mean parameter estimator with a given covariance parameter space. Because of practical restrictions,
we may hope that the cost can be controlled or be as low as possible. Tekle et al. (2008) compared different types of D-
optimal cohort designs and took the cost function into account. However, both of them were based on specific linear
mixed model (LMM; Laird andWare, 1982) and restricted the structure of the covariance matrix, such as independence or
exponential correlation,whichmay be unreasonable in practice. Therefore, in this paper,we focus on the estimation effects
of both the mean and the marginal covariance matrix and select optimal designs based on the mean–covariance models.
This paper is organized as follows. Section 2 gives a brief introduction to the mean–covariance models. Then we intro-

duce the trick of symmetrization for the designs under the Bayesian D-optimality criterion. Section 3 shows the proposed
criterion which takes both the parameter estimation and the cost for recruiting subjects and repeated measurements into
account. The numerical algorithmMSNTO (modified sequential number theoretic optimization) for solving the problem
is given in Section 4. Section 5 presents an application to a real dataset, and some simulation studies are also conducted.
Section 6 gives some conclusions.

2 D-OPTIMALITY CRITERION BASED ON THEMEAN–COVARIANCEMODELS

In this section, we first briefly describe the concept of the mean–covariance models. The contents are from the statements
in Pourahmadi (1999, 2000). Then based on the mean–covariance models, we develop some theoretical results about the
goodness of the symmetrized designs under the D-optimality criterion.
Like Ouwens et al. (2002), we consider designs where all subjects are measured at the same time points for practical

application. The collected data should be balanced if there is nomissing data, andwe assume thewithin-subject correlation
is the same for each subject. Let 𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛)

′ be an 𝑛 × 1 stacked vector of 𝑛 responses made at times 𝑡1, 𝑡2, … , 𝑡𝑛
for the 𝑖th subject, 𝑖 = 1, … ,𝑚. It is assumed that 𝒚𝑖 ∼ 𝑁𝑛(𝝁𝑖, 𝚺), where 𝝁𝑖 = (𝜇𝑖1, 𝜇𝑖2, … , 𝜇𝑖𝑛)

′ and 𝚺 = (𝜎𝑖𝑗) are the 𝑛 × 1

mean vector and the 𝑛 × 𝑛 covariance matrix of 𝒚𝑖 , respectively. 𝚺 is assumed to be positive definite. Pourahmadi (1999)
showed that the modified Choleskey decomposition Newton (1988) of 𝚺−1 offers a simple unconstrained and statistically
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meaningful reparameterization of the covariance matrix. In fact, there exists a unique lower triangular matrix 𝑻 with 1s
as the diagonal entries and a unique diagonal matrix 𝑫 with positive diagonals such that

𝑻𝚺𝑻′ = 𝑫 or 𝚺−1 = 𝑻′𝑫−1𝑻.

This decomposition has a simple statistical interpretation: the below-diagonal entries of 𝑻 are the negatives of the autore-
gressive coefficients, 𝜙𝑗𝑔, in the model �̂�𝑖𝑗 = 𝜇𝑖𝑗 +

∑𝑗−1

𝑔=1
𝜙𝑗𝑔(𝑦𝑖𝑔 − 𝜇𝑖𝑔), and the diagonal entries of 𝑫 are the prediction

error (innovation) variances 𝜎2
𝑗
= 𝑣𝑎𝑟(𝑦𝑖𝑗 − �̂�𝑖𝑗), for 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚. Since 𝜙𝑗𝑔 and log 𝜎2

𝑗
are unconstrained, they

may be modelled in terms of covariates. Thus, for 1 ≤ 𝑔 ≤ 𝑗 − 1, 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑚, Pourahmadi (1999) proposed
the joint mean–covariance models which could estimate the mean and the marginal covariance matrix simultaneously,
and there is no restriction on the structure of the covariance,

𝜇𝑖𝑗 = 𝒙′
𝑖𝑗
𝜷, log 𝜎2

𝑗
= 𝒛′

𝑗
𝝀, 𝜙𝑗𝑔 = 𝒛′

𝑗𝑔
𝜸, (1)

where 𝒙𝑖𝑗 is a 𝑝 × 1 vector of covariates whichmay contain baseline covariates, polynomials of time and their interactions
as well, 𝒛𝑗 and 𝒛𝑗𝑔 are 𝑑 × 1 and 𝑞 × 1 vectors of polynomials of time, 𝜷, 𝝀 and 𝜸 are the associated parameters. The three
submodels in (1) are called mean model, innovation variance model and autoregressive model, respectively. For example,
when we use polynomials in time to model the mean, autoregressive parameters and innovation variances, the covariates
may take the forms 𝒙𝑖𝑗 = (1, 𝑡𝑗 , … , 𝑡

𝑝−1
𝑗

)′, 𝒛𝑗 = (1, 𝑡𝑗 , … , 𝑡𝑑−1
𝑗

)′,𝒛𝑗𝑔 = (1, (𝑡𝑗 − 𝑡𝑔) , … , (𝑡𝑗 − 𝑡𝑔)
𝑞−1)′, where the within-

subject correlation only depends on the elapsed time.
Following Pourahmadi (2000), for estimating the parameters in (1), MLE is a suitable choice and the log-likelihood

function, up to the additive constant𝑚𝑛 log 2𝜋, is as follows:

−2𝑙(𝜷, 𝝀, 𝜸) = 𝑚 log |𝚺| + 𝑚∑
𝑖=1

(𝒚𝑖 − 𝑿𝑖𝜷)
′𝚺−1(𝒚𝑖 − 𝑿𝑖𝜷)

= 𝑚

𝑛∑
𝑗=1

log 𝜎2
𝑗
+

𝑚∑
𝑖=1

{𝒓𝑖 − 𝒁(𝑖)𝜸}′𝑫−1{𝒓𝑖 − 𝒁(𝑖)𝜸}

= 𝑚

𝑛∑
𝑗=1

log 𝜎2
𝑗
+

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑟𝑖𝑗 − 𝑟𝑖𝑗)
2

𝜎2
𝑗

,

where 𝑿𝑖 = (𝒙𝑖1, … , 𝒙𝑖𝑛)
′, 𝒓𝑖 = 𝒚𝑖 − 𝑿𝑖𝜷 = (𝑟𝑖𝑗)

𝑛
𝑗=1

, 𝒁(𝑖) = (𝒛(𝑖, 1), … , 𝒛(𝑖, 𝑛))′, 𝒛(𝑖, 𝑗) =
∑𝑗−1

𝑔=1 𝑟𝑖𝑔𝒛𝑗𝑔 and 𝑟𝑖𝑗 =∑𝑗−1

𝑔=1
𝑟𝑖𝑔𝜙𝑗𝑔 = 𝒛′(𝑖, 𝑗)𝜸 . Let 𝜽 = (𝜷

′
, 𝝀

′
, 𝜸′)′. The corresponding score function 𝑈(𝜽) = (𝑈′

1(𝜷), 𝑈
′
2(𝝀), 𝑈′

3(𝜸))
′

and the Fisher information matrix 𝐼𝜃 are obtained by 𝑈1(𝜷) =
∑𝑚

𝑖=1
𝑿′
𝑖𝚺

−1𝒓𝑖 , 𝑈2(𝝀) =
1

2

∑𝑚

𝑖=1
𝒁′(𝑫−1𝑹𝑖 − 𝟏𝑛),

𝑈3(𝜸) =
∑𝑚

𝑖=1 𝒁
′(𝑖)𝑫−1 (𝒓𝑖 − 𝒁(𝑖)𝜸) and

𝐼𝜃 = 𝐼𝜃(𝑛, 𝑡1, … , 𝑡𝑛,𝑚) =

⎛⎜⎜⎜⎝
∑𝑚

𝑖=1
𝑿′
𝑖𝚺

−1𝑿𝑖 𝟎 𝟎

𝟎
𝑚

2
𝒁′𝒁 𝟎

𝟎 𝟎 𝑚𝑾

⎞⎟⎟⎟⎠ , (2)

where 𝒁 = (𝒛1, … , 𝒛𝑛)
′, 𝑹𝑖 = (𝑒𝑖1, … , 𝑒𝑖𝑛)

′, 𝑒𝑖𝑗 = (𝑟𝑖𝑗 − 𝑟𝑖𝑗)
2, and 𝑾 =

∑𝑛

𝑗=1 𝜎
−2
𝑗
(
∑𝑗−1

𝑘=1

∑𝑗−1

𝑙=1 𝜎𝑘𝑙 𝒛𝑗𝑘𝒛
′
𝑗𝑙
). Then the MLEs

�̂� = (
∑𝑚

𝑖=1
𝑿′
𝑖𝚺

−1𝑿𝑖)
−1∑𝑚

𝑖=1
𝑿′
𝑖𝚺

−1𝒚𝑖 and �̂� = (
∑𝑚

𝑖=1
𝒁′(𝑖)𝑫−1𝒁(𝑖))−1

∑𝑚

𝑖=1
𝒁′(𝑖)𝑫−1𝒓𝑖 . For 𝝀, the Fisher scoring algorithm

is applied to update current value �̃� to �̂�where the iterative formula is �̂� = �̃� + 𝐼−122 (�̃�)𝑈2(�̃�) andwe regard the convergence
solution as the MLE of it. Furthermore, under some regularity conditions, the consistency and asymptotic normality of
�̂� = (�̂�

′
, �̂�

′
, �̂�

′
)′were also obtained in Pourahmadi (2000). Given𝚺, �̂�, �̂� and �̂� can be regarded as asymptotically orthogonal

and their asymptotic covariance matrices are the block diagonal elements of 𝐼−1
𝜃0
, where 𝜽0 is the true value of 𝜽. Detailed

discussion refers to Pourahmadi (2000) and Ye and Pan (2006).
In addition, it is well known that in the LMMs, the variance parameter estimators have less biases with RMLE than

with MLE. The RMLE for 𝜽 in the mean–covariance models, which adjusts for the degrees of freedom lost due to the
estimation of the mean parameter 𝜷, was also discussed in Papageorgiou (2012). Following Papageorgiou (2012), since 𝜷
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YI et al. 1075

is orthogonal to (𝝀, 𝜸), the estimate of 𝜷 varies only slowly with (𝝀, 𝜸) and almost identical estimates of 𝜷 are obtained
by MLE and RMLE. It also turned out that the correlation parameter 𝜸 is not misestimated by MLE, while RMLE indeed
brings better estimates for the variance parameter 𝝀. However, both Jiang (1996) and Papageorgiou (2012) stated that when
the number of the parameters is fixed or bounded, MLE and RMLE are asymptotically equivalent, that is the asymptotic
covariance matrix of RMLEs is the same as that of MLEs. Moreover, utilizing the asymptotic property to construct the
optimality criterion is common in optimal designs. Thus if the criterion is based on the asymptotic covariance matrix,
optimal designs can be suitable for both MLE and RMLE procedures.
D-optimal allocation of the time points for longitudinal models has been studied in the literature. In this paper, we also

consider the D-optimality. A design is called D-optimal if it minimizes the determinant of the covariance matrix of the
parameter estimators. A D-optimal design also minimizes the volume of the confidence ellipsoid for the estimators, and
it is invariant to non-degenerate linear transformations of the variables in the model. However, it can be seen that 𝐼𝜃 in
(2) still depends on the unknown covariance matrix 𝚺. The prior information about 𝚺, equivalently, that about 𝝀 and 𝜸 ,
is needed. To solve this problem, one mainstream approach is to derive the optimal design for a particular guessed value
of 𝝀 and 𝜸 . Here, we would adopt the Bayesian optimal design approach, which is a good compromise over a range of the
parameter values as a prior information. Let the time points design space be Δ and 𝜏 = (𝑡1, … , 𝑡𝑛) ∈ Δ with 𝑡𝑖 ∈ [−𝑇, 𝑇],
𝑖 = 1, … , 𝑛. We define the Bayesian D-optimality criterion as

max
Δ

1|Φ| ∑
Φ

|𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 ,

whereΦ is the prior parameter space, |Φ| is the cardinality ofΦ and we take the (𝑝 + 𝑑 + 𝑞)th root of |𝐼𝜃| to eliminate the
effect of the order. Thus the selected design shall be suitable for both MLE and RMLE.
In the following part, we discuss some novel results about the designs based on the Bayesian D-optimality criterion. The

proofs of the following proposition and theorem are given in the Appendix. Assume that the contained baseline covariates
are not changed with th e considered time points. That is, for each subject and any 𝜏1, 𝜏2 ∈ Δ, the values of these baseline
covariates under 𝜏1 are equal to those under 𝜏2. Define the symmetric design of any design 𝜏 by multiplying each time
point by −1. Inspired by the Property 1 of Ouwens et al. (2002), we can obtain the similar proposition as follows.

Proposition 2.1. Given two joint mean–covariance models𝑀1 and𝑀2. Let the baseline covariates in 𝑋𝑖 , 𝑝, 𝑑 and 𝑞 be the
same for both models, and let the associated parameters 𝝀1, 𝜸1 for 𝑀1 and 𝝀

2
, 𝜸2 for 𝑀2 satisfy 𝝀

2
= 𝑨𝝀

1 and 𝜸2 = 𝑬𝜸1,
where 𝑨 and 𝑬, respectively, are 𝑑 × 𝑑 and 𝑞 × 𝑞 diagonal matrices with odd diagonal entries being 1 and even entries being
−1. Then,

𝑑𝑒𝑡{𝐼𝜃(𝑛, 𝜏,𝑚)|𝑀1} = 𝑑𝑒𝑡{𝐼𝜃(𝑛, �̃�, 𝑚)|𝑀2}, (3)

where �̃� is the symmetric design of 𝜏 in Δ.

Based on Proposition 2.1, with a specific prior (𝝀10, 𝜸1
0), if 𝜏

∗ is the locally optimal design for𝑀1, then with the specific
prior (𝑨𝝀10, 𝑬𝜸1

0), �̃�
∗ is also the locally optimal design for𝑀2. If 𝜏∗ is symmetric, that is 𝜏∗ = −𝜏∗, it is the locally optimal

design for both𝑀1 and𝑀2. Define the prior parameter space as Φ = {(𝝀
1
, 𝜸1), (𝝀

2
, 𝜸2) ∶ 𝝀

2
= 𝑨𝝀

1
, 𝜸2 = 𝑬𝜸1} where the

ranges of (𝝀1, 𝜸1) are decided by the practical prior information. Then we can obtain the following theorem.

Theorem 2.2. For any design 𝜏 ∈ Δ, we have

∑
Φ

|𝐼𝜃(𝑛, 𝜉,𝑚)| 1

𝑝+𝑑+𝑞 ≥ ∑
Φ

|𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 , (4)

where 𝜉 = {(𝜏,
1

2
), (�̃�,

1

2
)} and �̃� is the symmetric design of 𝜏 in Δ.

Proposition 2.1 and Theorem 2.2 are in the spirit of Ouwens et al. (2002) in which they only discussed the maximin
designs for the mean estimation in the polynomial random slope model. However, we consider the Bayesian designs for
both the mean and the covariance matrix estimations in the mean–covariance models and we extend it to any order of
the models. The maximin case can be proved similarly. According to Theorem 2.2, it is known that for any design 𝜏 ∈ Δ,
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1076 YI et al.

the derived symmetrized design 𝜉 is better than 𝜏 under the Bayesian D-optimality criterion. It implies that we can first
select a general optimal design 𝜏∗, and then for better estimates, half of the subjects are measured according to 𝜏∗ and half
of the subjects are measured according to �̃�∗. On the other hand, if 𝜏 is a symmetric design, we have 𝜉 = 𝜏. It provides a
possible search direction to symmetric designs, which reduce the search space and may lead to good designs.

3 OPTIMALITY CRITERION FOR PARAMETER ESTIMATIONS AND SAVING COST

In Section 2, based on themean–covariance models, we discuss the properties of the designs under Bayesian D-optimality
criterion. Bayesian D-optimal design canmake the estimation of 𝜽 as accurate as possible in themean–covariancemodels.
However, in practical application we also hope that the total cost is as low as possible. Thus we modify the Bayesian D-
optimality criterion and propose an optimality criterion 𝐶𝜃(𝑛, 𝜏,𝑚) to select the optimal design 𝑑opt = (𝑛∗, 𝜏∗,𝑚∗), that
is,

max 𝐶𝜃(𝑛, 𝜏,𝑚) ≜ log(
1|Φ| ∑

Φ

|𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 ) − (𝑐1𝑚 + 𝑐2𝑚𝑛)

𝑠.𝑡. 𝑚min ≤ 𝑚 ≤ 𝑀max, (5)

max{𝑝, 𝑑, 𝑞} ≤ 𝑛 ≤ 𝑁max,

− 𝑇max < 𝑡1 < ⋯ < 𝑡𝑛 ≤ 𝑇max,

min
𝑖=1∶(𝑛−1)

{𝑡𝑖+1 − 𝑡𝑖} ≥ 𝓁.

Here we use the log function to reduce the order of magnitude. Since the numbers of subjects and repeated measure-
ments for each subject usually need to be restricted because of monetary cost, subject fatigue or other logistical reasons,
we consider the cost function 𝑐 = 𝑐1𝑚 + 𝑐2𝑚𝑛, where 𝑐1 and 𝑐2, respectively, are the cost of each subject and repeated
measurement. They can adjust the weight between the generalized variance |𝐼𝜃| and the cost function. In practice, the
cost of recruiting a new subject for a study is often larger than that of obtaining a measurement for each subject, that is
𝑐1 ≥ 𝑐2. Comparing with the cost part of the objective function in Tekle et al. (2008), the difference is that we do not fix
the cost but want to minimize it instead. The cost function can be treated as a penalty to make a trade-off between the
Fisher information matrix and 𝑚, 𝑚 and 𝑛. From (2), it is known that larger 𝑚 indicates more information because of
the positive definiteness of the Fisher information matrix, while larger 𝑚 also increases the cost. Larger 𝑛 often makes
smaller 𝑚 when the cost function is fixed. The optimization result is also influenced substantially by 𝑐1 and 𝑐2, and they
can be set according to the actual situation. Additionally, we make some necessary constraints. The maximal values of𝑚,
𝑛 and the elements of 𝜏 are limited by𝑀max,𝑁max and 𝑇max , the minimal value of 𝑚 should also be limited by 𝑚min to
guarantee certain estimation accuracy of those parameters. In order to make the Fisher information matrix non-singular,
𝑛 should be the maximum of {𝑝, 𝑑, 𝑞} at least. The minimal interval of the time points is required to be not less than 𝓁 for
practical application. Additionally, in the computer implementation, because the number of the optimization variables
in the optimization problem is different for different 𝑛, we sequentially maximize the criterion value for each 𝑛 and then
choose the (𝑛, 𝜏,𝑚) corresponding to the maximal criterion value as the 𝑑opt.
Compared with the previous studies that discussed the optimal designs for LMMs, such as Ouwens et al. (2002) and

Tekle et al. (2008), the proposed optimality criterion 𝐶𝜃(𝑛, 𝜏,𝑚) takes the estimation precision of both the mean vector
and the covariance matrix into account and there is no any restriction on the structure of the covariance matrix, and the
literature work only considered the mean alone and made the covariance matrices of the random effect and the random
error known. If we just focus on themean and ignore the cost, the optimality criterion will degenerate into the existing sit-
uations.
Furthermore, in order to compare the performance of different designs, we define the relative efficiency (𝑅𝐸). Actually,

the values of 𝑛 and 𝑚 are not replaceable, for example 𝑛1 = 2𝑛2 cannot be offset by 𝑚1 = 𝑚2∕2, because of the within-
subject correlation.Doubling up the number of time points for each subject does not double up the information,while dou-
bling up the number of subjects indeed doubles up the amount of information. Thus for any two designs 𝑑1 = (𝑛1, 𝜏1,𝑚1)

 15214036, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202000129 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YI et al. 1077

and 𝑑2 = (𝑛2, 𝜏2,𝑚2), the 𝑅𝐸 is defined as

𝑅𝐸(𝑑1, 𝑑2; Φ) = 𝑅𝐸(𝑑1, 𝑑2) =
𝑚2

𝑚1
⋅

∑
Φ |𝐼𝜃(𝑑1)| 1

𝑝+𝑑+𝑞∑
Φ
|𝐼𝜃(𝑑2)| 1

𝑝+𝑑+𝑞

, (6)

where the term𝑚2∕𝑚1 is used to eliminate the impact of number of subjects. Given the prior space Φ, if 𝑑2 is an optimal
design under 𝐶𝜃-criterion, the 𝑅𝐸 is also the efficiency of 𝑑1 relative to the optimal design. Further, if 𝑅𝐸(𝑑1, 𝑑2) > 1(< 1),
the performance of𝑑1 is better (worse) than𝑑2, and𝑅𝐸(𝑑1, 𝑑2) = 1means that the two designs have the same performance.

4 NUMERICAL IMPLEMENTATION

Many powerful algorithms have been discussed in the literature to solve the optimization problems, such as the gradient
descentmethod, theGauss–Newtonmethod and so on.However, thosemethods only provide a localmaximal solution and
require the derivatives of the objective function. It is not suitable to solve the optimization problem in (5) by thosemethods
since the objective function may have multiple local maxima, and it is difficult to calculate the derivatives of the function.
Therefore, we need a new method to solve such a problem. It is known that the SNTO (sequential number-theoretic
optimization) algorithm (Fang & Wang, 1994) can find the global maximum and the maximum point of a continuous
function over a closed and bounded domain. The SNTO is a sequential algorithm, in which the feasible region is set as
a hypercube. It uses the uniform designs to arrange points in the domain and contracts the domain according to some
criterion until the required accuracy is achieved. Thus it can serve for the optimization of a multiple modal function
without requirements of continuous derivatives and save computing time. The feasible region in (5) is not a hypercube,
and thus we consider a modified SNTO, denoted by MSNTO, to solve the optimization problem in (5). Here we define the
standard feasible region as

𝑁𝑛+𝑣 = {(𝑡1, … , 𝑡𝑛+𝑣) ∶ 0 < 𝑡1 < ⋯ < 𝑡𝑛 ≤ 1, 0 < 𝑡𝑛+𝑖 ≤ 1, 𝑖 = 1, … , 𝑣,min
𝑖
{𝑡𝑖+1 − 𝑡𝑖} ≥ 𝜅},

where 𝜅 should be less than 1∕(𝑛 − 1). The key to theMSNTO is to construct the uniform designs on𝑁𝑛+𝑣. Theorem 1.6 of
Fang and Wang (1994) shows that applying the inverse transform method can find a set of points uniformly scattered on
𝑁𝑛+𝑣 based on [0, 1]𝑛+𝑣. This theorem is also provided in the Appendix. Similarly, if {𝒄𝑘} are the points uniformly scattered
on [0, 1]𝑛+𝑣, we can obtain {𝒕𝑘} which are uniformly scattered on 𝑁𝑛+𝑣 by a specific transformation. We subsequently
call it 𝒉-transformation. To derive the 𝒉-transformation, we first consider the mapping from [0, 1]𝑛+𝑣 to 𝑁𝑛+𝑣. Let 𝒕 =
(𝑡1, … , 𝑡𝑛+𝑣) be a random vector which is uniformly distributed on 𝑁𝑛+𝑣, then we have the stochastic representation

𝑡𝑖 =

{
(𝑖 − 1)𝜅 + 𝐵𝜙𝑖 ⋯𝜙𝑛 𝑖 = 1,… , 𝑛,

𝜙𝑖 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑣,
(7)

where 𝐵 = 1 − (𝑛 − 1)𝜅 and 𝝓 = (𝜙1, … , 𝜙𝑛+𝑣) ∈ [0, 1]𝑛+𝑣.
Based on the stochastic representation, we can prove that

(1) 𝜙1, … , 𝜙𝑛+𝑣 are mutually independent;

(2) 𝜙𝑗 has the cumulative distribution function (c.d.f.)𝐹𝑗(𝜙)=

⎧⎪⎨⎪⎩
𝜙𝑗 1 ≤ 𝑗 ≤ 𝑛

𝜙 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑣
and the inverse function of 𝐹𝑗(𝜙)

is 𝐹−1
𝑗
(𝜙) = {𝜙

1

𝑗 1 ≤ 𝑗 ≤ 𝑛

𝜙 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑣
, where 𝑗 = 1,… , 𝑛 + 𝑣, 0 ≤ 𝜙 ≤ 1.

Then, we obtain the 𝒉-transformation 𝒕𝑘 = 𝒉(𝒄𝑘) as follows.
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1078 YI et al.

Proposition 4.1. Suppose that {𝒄𝑘 = (𝑐𝑘1, … , 𝑐𝑘(𝑛+𝑣))} are points uniformly scattered on [0, 1]𝑛+𝑣 . Let

𝑡𝑘𝑖 =

⎧⎪⎨⎪⎩
(𝑖 − 1)𝜅 + 𝐵𝑐

1

𝑖

𝑘𝑖
⋯ 𝑐

1

𝑛

𝑘𝑛
𝑖 = 1, … , 𝑛

𝑐𝑘𝑖 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑣,
(8)

where 𝐵 = 1 − (𝑛 − 1)𝜅. Then {𝒕𝑘 = (𝑡𝑘1, … , 𝑡𝑘(𝑛+𝑣))} are points uniformly scattered on𝑁𝑛+𝑣 .

The proof of Proposition 4.1 is given in the Appendix. Our purpose is to convert the uniform points on [0, 1]𝑛+𝑣 to𝑁𝑛+𝑣

and retain the uniformity. Both (7) and (8) can convert [0, 1]𝑛+𝑣 to𝑁𝑛+𝑣, but they have different uniformities. We give an
illustration for two-dimensional case to verify the validity of Proposition 4.1 in Supplementary Material A.1. Further, after
obtaining the 𝒉-transformation in Proposition 4.1, the MSNTO algorithm can be summarized as the following steps for
each fixed 𝑛 and 𝑣,

Step 1. Initialization. Set 𝑤 = 0, 𝑁(0)
𝑛+𝑣 = 𝑁𝑛+𝑣, 𝐸(0) = [0, 1]𝑛+𝑣, 𝒂(0) = 𝟎(𝑛+𝑣)×1, 𝒃

(0)
= 𝟏(𝑛+𝑣)×1;

Step 2. Generate points uniformly scattered on 𝑁
(𝑤)
𝑛+𝑣. Generate points {𝒄

(𝑤)
𝑘

, 𝑘 = 1,… , 𝑛𝑤} uniformly scattered on
𝐸(𝑤). Then we can obtain points  (𝑤) = {𝒕

(𝑤)
𝑘

| 𝒕
(𝑤)
𝑘

= 𝒉(𝒄
(𝑤)
𝑘

), 𝑘 = 1,… , 𝑛𝑤} uniformly scattered on 𝑁
(𝑤)
𝑛+𝑣;

Step 3. Compute new approximation. Find 𝒕(𝑤) ∈  (𝑤)⋃{𝒕(𝑤−1)} and the value of the objective function𝐶(𝑤) such that
𝐶(𝑤) = 𝐶(𝒕(𝑤)) ≥ 𝐶(𝒚), ∀𝒚 ∈  (𝑤)⋃{𝒕(𝑤−1)};

Step 4. Termination criterion. Let 𝒄(𝑤) = (𝒃
(𝑤)

− 𝒂(𝑤))∕2. If max 𝒄(𝑤) < 𝛿, a pre-determined small number, then 𝒕(𝑤)

and 𝐶(𝑤) are acceptable; terminate algorithm. Otherwise, go to the next step;
Step 5. Contract domain. Let 𝒐(𝑤) be the point of [0, 1]𝑛+𝑣 corresponding to 𝒕(𝑤) by 𝒕(𝑤) = 𝒉(𝒐(𝑤)). Form the new domain

𝐸(𝑤+1) = [𝒂(𝑤+1), 𝒃
(𝑤+1)

], where 𝑎
(𝑤+1)
𝑖

= max(𝑜
(𝑤)
𝑖

− 𝛾0𝑐
(𝑤)
𝑖

, 0), 𝑏(𝑤+1)
𝑖

= min(𝑜
(𝑤)
𝑖

+ 𝛾0𝑐
(𝑤)
𝑖

, 1), 𝑖 = 1, … , 𝑛 + 𝑣,
and 𝛾0 is a predefined contraction ratio. Let 𝑁

(𝑤+1)
𝑛+𝑣 be the subdomain of 𝑁𝑛+𝑣, which corresponds to 𝐸(𝑤+1) by

the relation 𝑁
(𝑤+1)
𝑛+𝑣 = {𝒕 | 𝒕 = 𝒉(𝒖), 𝒖 ∈ 𝐸(𝑤+1)}. Set 𝑤 = 𝑤 + 1. Go to Step 2.

Let 𝐷𝑛+1 = {(𝑡1, … , 𝑡𝑛,𝑚) ∶ −𝑇max < 𝑡1 < ⋯ < 𝑡𝑛 ≤ 𝑇max,𝑚min ≤ 𝑚 ≤ 𝑀max ,min𝑖{𝑡𝑖+1 − 𝑡𝑖} ≥ 𝓁}. We use the MSNTO
algorithm to solve the optimization problem in (5) through simple transformation from 𝑁𝑛+1 to 𝐷𝑛+1. In Step 2, we use
the good lattice point method with a power generator (Korobov, 1959) to construct some designs where each factor has
𝑛𝑤 levels and calculate their mixture discrepancy (MD) values (Zhou et al., 2013). The MD is a reasonable measure of
uniformity for uniform designs. For a design 𝑫 = (𝑑𝑖𝑗) with 𝑠 runs and 𝑛 + 1 factors, the square value of MD is

𝑀𝐷2(𝑫) =

(
19

12

)𝑛+1

−
2

𝑠

𝑠∑
𝑖=1

𝑛+1∏
𝑗=1

(
5

3
−

1

4
|𝑑𝑖𝑗 − 1

2
| − 1

4
|𝑑𝑖𝑗 − 1

2
|2)

+
1

𝑠2

𝑠∑
𝑖=1

𝑛+1∑
𝑘=1

𝑛+1∏
𝑗=1

(
15

8
−

1

4
|𝑑𝑖𝑗 − 1

2
| − 1

4
|𝑑𝑘𝑗 − 1

2
| − 3

4
|𝑑𝑖𝑗 − 𝑑𝑘𝑗| + 1

2
|𝑑𝑖𝑗 − 𝑑𝑘𝑗|2).

We choose the design with the minimal MD value as the uniform design for each iteration and each 𝑛 and transform
the levels of the last column into [𝑚min,𝑀max] through pseudo-level transformation (Fang et al., 2006). If 𝑛𝑤 is even, we
generally construct designs with run size 𝑛𝑤 + 1 first to obtain more alternative designs. Then we delete the last row and
choose the design with best uniformity as the uniform design. We transform the uniform designs onto [0, 1]𝑛+1 by 𝑑𝑘𝑖 =
(2𝑢𝑘𝑖 − 1)∕(2𝑞𝑖), 𝑘 = 1,… , 𝑛𝑤, 𝑖 = 1, … , 𝑛 + 1, where 𝑞𝑖 = 𝑛𝑤 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑞𝑛+1 = 𝑀max . Set 𝑐𝑘𝑖 = 𝑎𝑖 + (𝑏𝑖 − 𝑎𝑖)𝑑𝑘𝑖 ,
𝑘 = 1,… , 𝑛𝑤, 𝑖 = 1, … , 𝑛 + 1. Then {𝒄𝑘, 𝑘 = 1,… , 𝑛𝑤} is a uniformdesign on [𝒂, 𝒃]. The parameter 𝜅 should be𝓁∕(2𝑇max) to
ensure that the minimal time interval of the transformed time points on [−𝑇max, 𝑇max]

𝑛 is 𝓁. In general, the first iteration
step needs more runs to increase the possibility for approaching the global maximum. Moreover, we can use the same
uniform design on [0, 1]𝑛+1 for the iteration steps 𝑤 ≥ 2. It can decrease the computational complexity and the precision
for finding global maximum will be higher on smaller domain with the same uniform design. In Step 3, we compare the
current maximum point with the previous one to guarantee that the objective function is monotonically non-decreasing.
In Step 4, the termination criterion is that the experimental domain is small enough rather than |𝐶(𝑤) − 𝐶(𝑤−1)| < 𝛿. The
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YI et al. 1079

reason is that it may occur 𝐶(𝑤) = 𝐶(𝑤−1) in the iterative process, while the value may increase when the experimental
domain continues contracting. And the contraction ratio 𝛾0 is often taken to be 0.5.
Based on the discussion in Section 2, we can also select the symmetric optimal designs based on the class of symmetric

time points for each 𝑛. The steps for constructing symmetric time points in the standard feasible region𝑁𝑛 can be found in
SupplementaryMaterial A.2. In fact, the run sizes of the uniform designs inMSNTO should be large to guarantee a certain
precision, especially for large 𝑛. However, if we just consider the symmetric time points, the numbers of the columns
that need to be constructed for the uniform designs are only half of the original numbers. Thus, this approach not only
reduces the search space but also reduces the computational complexity of the MSNTO algorithm. These statements will
be demonstrated in the next section.

5 DATA ILLUSTRATION: CATTLE DATA

In this section, we apply the proposed 𝐶𝜃-criterion and the MSNTO algorithm to a real application—the cattle data (Ken-
ward, 1987). In this balanced longitudinal study, 60 cattle were assigned randomly and equally to two treatment groups A
and B. The animals were weighted 11 times over the 133-day period at 0, 14, 28, 42, 56, 70, 84, 98, 112, 126 and 133 days on
schedule, which closes to a uniform design. Their weights were recorded to study the effect of treatment on the intestinal
parasites. Thus it is necessary to estimate the mean and the covariance matrix of the weights for each animal. Focusing
on group A, the mean–covariance models are appropriate for analysing these data (Pan &MacKenzie, 2003; Pourahmadi,
1999, 2000). Following Pan andMacKenzie (2003), for the data in group A, the best fitting models for 𝜇𝑖𝑗 , log 𝜎2𝑗 and 𝜙𝑗𝑔 in
the mean–covariance models are the eighth, third and fourth degree polynomials in week, respectively, as shown below
(1) with (𝑝, 𝑑, 𝑞) =(9, 4, 5). The optimal designs only focusing on the mean do not take the estimation of the covariance
into account. It can lead to larger estimation bias and variance for the covariance matrix, which will be illustrated in the
following simulation. Hence, to improve the estimations of both mean and covariance matrix, it is meaningful to select
optimal designs under the mean–covariance models for the follow-up study. Here we use the same models to re-analysed
the data with the original times rescaled to 𝑡ori = −10, −8, . . . , 8, 9. The MLEs are �̂�𝑜 = (�̂�

′

𝑜, �̂�
′

𝑜, �̂�
′
𝑜)

′, where �̂�𝑜 =(294, 6.27,
−0.19, −4.91e-2, −1.42e-2, 1.3e-3, 3.21e-04, −1.06e-05, −1.87e-06)′, �̂�𝑜 =(3.48, 0.01, 4.44e-3, −7.96e-4)′ and �̂�𝑜 =(0.30, 0.31,
−0.10, 8.64e-3,−2.31e-4)′. For locally optimal design, we regard �̂�𝑜 = (�̂�

′

𝑜, �̂�
′
𝑜) as the specific priors. For the Bayesian case,

we choose the prior parameter space Φ with 𝝀
1
∈ [−3.6, −3.2]

⋃
[3.2, 3.6] × [−0.02, 0.02] × {4.44𝑒 − 3} × {−7.96𝑒 − 4},

𝜸2 ∈ [−0.5, 0.5] × [−0.4, 0.4] × [−0.2, 0.2] × {8.64𝑒 − 3} × {−2.31𝑒 − 4} and any randomly sampled prior is independently
and uniformly distributed. Here we fix the small parameters, and one can also choose other priors. We consider the cases
for the cost: (𝑐1, 𝑐2)∕𝜌0 ∈ {(0, 0), (50, 10), (100, 10), (500, 10)}, where 𝜌0 = 1e-4, and it balances the magnitude of the gen-
eralized variance and the cost. Let the bounds of the numbers of the follow-up subjects 𝑀max and 𝑚min be 100 and 30,
the maximal values of the repeated measurements𝑁max and the specific time points 𝑇max be 11 and 10, the minimal time
interval 𝓁 = 1. Three types of optimal designs are considered, that is the general optimal design (𝑑𝑜), the symmetric opti-
mal design (𝑑sym) and the symmetrized optimal design (𝑑sym2). The design 𝑑𝑜 is selected from all possible allocation of
time points on [−𝑇max, 𝑇max] to maximize 𝐶𝜃-criterion. For the design 𝑑sym, we restrict the searching to the symmetric
time points. The design 𝑑sym2 is derived from 𝑑𝑜 by symmetrization as in Theorem 2.2. These optimal designs are selected
using MSNTO. We compare the performance of these optimal designs and the original design (𝑑ori = (11, 𝑡ori, 30)). The
locally and Bayesian optimal designs are also compared. Further, we study the effect of different costs, the sensitivity of
optimal designs to the prior parameter intervals, the comparison of designs selected based on 𝐶𝜃-criterion and the cri-
terion which only focuses on the mean, and the effects on the selected designs for cases when the mean model and the
covariance models are misspecified. Finally, we also compare MLE with RMLE based on the selected optimal designs.
For both local and Bayesian cases, we obtain 𝑑𝑜 and 𝑑sym under different cost parameter values. For each case, the

optimal design is attained at 𝑛 = 11. In Figure 1, we show the optimal time points, the C-values and the optimal numbers
of subjects𝑚∗. When the cost parameters become larger, the number of subjects becomes smaller to reduce the total cost
and hence maximize the C-value. Thus the selected optimal design balances the D-optimality and the collection cost.
For both local and Bayesian cases, it occurs that 𝑑sym is better than 𝑑𝑜. The reason may be that the searching precision
in the MSNTO without any restriction is lower than that restricted to the symmetric time points. For the local case, the
condition about the prior spaceΦ in (4) cannot be satisfied, while the constructed prior space of the Bayesian case accords
with it. Hence it is more likely to select a better design for the Bayesian case in the symmetric time points, that is except
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1080 YI et al.

A B

F IGURE 1 (A) The locally optimal designs; (B) the Bayesian optimal designs. The symbols ‘∗’ and ‘+’ denote for the general and symmetric
optimal time points, respectively. Each pair of the values in the subplots, respectively, are the corresponding C-value and𝑚∗ for each case

TABLE 1 The 𝑅𝐸’s among 𝑑ori, 𝑑𝑜 , 𝑑sym and 𝑑sym2 for local and Bayesian cases

Locally Bayesian
(𝒄𝟏, 𝒄𝟐)∕𝝆𝟎 (0,0) (50,10) (100,10) (500,10) (𝒄𝟏, 𝒄𝟐)∕𝝆𝟎 (0,0) (50,10) (100,10) (500,10)
𝑅𝐸(𝑑𝑜, 𝑑ori; �̂�𝑜) 1.67 1.75 1.85 1.71 𝑅𝐸(𝑑𝑜, 𝑑ori; Φ) 2.85 3.03 2.90 3.38
𝑅𝐸(𝑑sym, 𝑑𝑜; �̂�𝑜) 1.09 0.98 0.98 0.92 𝑅𝐸(𝑑sym, 𝑑𝑜; Φ) 1.13 1.03 1.14 0.93
𝑅𝐸(𝑑sym2, 𝑑𝑜; �̂�𝑜) 1.27 1.07 1.19 1.29 𝑅𝐸(𝑑sym2, 𝑑𝑜; Φ) 2.50 3.19 3.18 3.18
𝑅𝐸(𝑑𝑜,𝑛=9, 𝑑ori; �̂�𝑜) 1.26 1.21 1.18 1.25 𝑅𝐸(𝑑𝑜,𝑛=9, 𝑑ori; Φ) 1.27 1.25 1.30 1.17
𝑅𝐸(𝑑𝑜,𝑛=10, 𝑑ori; �̂�𝑜) 1.43 1.62 1.54 1.34 𝑅𝐸(𝑑𝑜,𝑛=10, 𝑑ori; Φ) 2.36 2.54 2.52 2.36

for the case (𝑐1, 𝑐2)∕𝜌0 =(500, 10), the Bayesian 𝑑syms are slightly better than 𝑑𝑜s. Thus, under the same cost parameters,
the performance of 𝑑sym is similar to 𝑑𝑜, even better.
Further, we compare the performance of 𝑑ori, 𝑑𝑜, 𝑑sym and 𝑑sym2 through 𝑅𝐸 for both local (under single prior �̂�𝑜) and

Bayesian cases (under prior space Φ). From Table 1, 𝑑𝑜 shows better performance than 𝑑ori, and 𝑑sym2 is better than 𝑑𝑜.
𝑅𝐸(𝑑sym, 𝑑𝑜) is always around 1. Thus 𝑑𝑜, 𝑑sym and 𝑑sym2 are all better than 𝑑ori, and 𝑑sym shows similar performance
to 𝑑𝑜. This coincides with the C-values in Figure 1 exactly. 𝑑sym2 is better than both 𝑑𝑜 and 𝑑sym. It demonstrates the
validity of Theorem 2.2. In addition, we also obtain 𝑅𝐸(𝑑𝑜,𝑛=9, 𝑑ori) and 𝑅𝐸(𝑑𝑜,𝑛=10, 𝑑ori) for the optimal designs with 𝑛 =

9, 10. As shown in the last two rows in Table 1, even though the number of the repeated measurements 𝑛 is smaller, the
selected optimal designs are still better than 𝑑ori. And as 𝑛 becomes larger, the optimal designs show better performance.
In addition, in the above discussion, we fix the size of the prior parameter interval. To study the sensitivity of the Bayesian
optimal designs for the prior parameter intervals, we select optimal designs under various interval sizes and compare
them using 𝑅𝐸 in Supplementary Material A.3. The results show that the selected designs have good robustness to the
interval sizes.
For distinction and simplicity, denote the locally and Bayesian optimal designs by 𝑑𝐿∗ and 𝑑𝐵∗ , respectively, where symbol

‘∗’ can be 𝑜, 𝑠𝑦𝑚, 𝑠𝑦𝑚2, 𝛽. In order to investigate the properties of the selected optimal designs above for the parameter
estimations of themean–covariancemodels, we assume that the true parameters 𝜽𝑡 = (𝜷

′
𝑡, 𝝀

′
𝑡, 𝜸

′
𝑡)
′ = (�̂�

′

𝑜, �̂�
′

𝑜, �̂�
′
𝑜)

′. The true
mean and true covariance matrix are obtained by 𝝁𝑡 = 𝑿𝜷𝑡 and 𝚺𝑡 = 𝚺𝑡(𝜽𝑡) = 𝑻−1

𝑡 𝑫𝑡(𝑻
′
𝑡)
−1, which relies on the structure

of the model. Thus, once the structure and design are given, the true mean and covariance matrix are also determined.
Then, we carry out 100 repetitions to sample 𝒚𝑖, 𝑖 = 1, … ,𝑚∗ where 𝒚𝑖 ∼ 𝑁𝑛(𝝁𝑡, 𝚺𝑡) and estimate the parameters. Here we
consider the selected optimal designs under (𝑐1, 𝑐2) =(0, 0), and the corresponding results of MLEs are given in Table 2,
where (i) se_bta, se_lamb and se_gam denote for the products of the standard errors for �̂�, �̂� and �̂� , respectively; (ii)
se_prodt denotes for the product of se_bta, se_lamb and se_gam (the total standard errors); (iii) det_OC denotes for the
determinant of the observed covariance matrix of the estimators (the generalized variance); (iv) bia_bta, bia_lamb and
bia_gam denote for the summations of the elements of the differences between the true values and the averages for �̂�, �̂�
and �̂� , respectively; (v) bia_sumt denotes for the summation of bia_bta, bia_lamb and bia_gam (the total biases). There is
no limit to the collection cost, so the optimal numbers of subjects for all the optimal designs are nearly 100, the maximal
value. Thuswe reset the number of subjects for the original design to 100. Additionally, we also discuss the optimal designs
under the case (𝑐1, 𝑐2)∕𝜌0 =(100, 10) in Supplementary Material A.4.
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YI et al. 1081

TABLE 2 The (a) standard errors and (b) biases of the estimators for different types of designs

(a)
Design se_bta se_lamb se_gam se_prodt det_OC
𝑑ori 3.0426e-26 4.6213e-10 2.3270e-12 3.2720e-47 3.7582e-119
𝑑𝐿𝑜 5.9774e-25 4.3687e-10 8.3970e-14 2.1927e-47 1.8828e-123
𝑑𝐿sym 8.6906e-27 5.7133e-10 3.4044e-14 1.6904e-49 3.9169e-124
𝑑𝐿sym2 8.4711e-27 4.4610e-10 1.2206e-13 4.6127e-49 3.4555e-125
𝑑𝐵𝑜 1.5069e-26 4.4183e-10 1.9045e-13 1.2679e-48 7.7013e-123
𝑑𝐵sym 1.2534e-26 3.0116e-10 1.1510e-13 4.3447e-49 1.9851e-123
𝑑𝐵sym2 8.4847e-27 2.6976e-10 2.6213e-13 5.9997e-49 1.8631e-123
𝑑𝐿
𝛽

4.1155e-27 3.6106e-10 4.4293e-13 6.5816e-49 1.0115e-122

𝑑𝐵
𝛽

1.7811e-27 4.1255e-10 6.5402e-13 4.8056e-49 1.2156e-122

(b)
Design bia_bta bia_lamb bia_gam bia_sumt
𝑑ori 0.1647 0.0135 0.0306 0.2088
𝑑𝐿𝑜 0.0859 0.0119 0.0079 0.1056
𝑑𝐿sym 0.1387 0.0140 0.0052 0.1579
𝑑𝐿sym2 0.0567 0.0024 0.0069 0.0660
𝑑𝐵𝑜 0.1169 0.0104 0.0067 0.1341
𝑑𝐵sym 0.1296 0.0172 0.0089 0.1556
𝑑𝐵sym2 0.0694 0.0063 0.0186 0.0943
𝑑𝐿
𝛽

0.1402 0.0176 0.0063 0.1641

𝑑𝐵
𝛽

0.1837 0.0136 0.0088 0.2061

For all optimal designs based on𝐶𝜃-criterion, that is the rows 3–8 in Table 2(a) and (b), the total standard errors and total
biases are smaller than those for 𝑑ori. The optimality of the generalized variance of �̂� is also guaranteed by the proposed
𝐶𝜃-criterion. Thus it implies that the optimal designs are better than the original design. Due to the precise prior, the
generalized variances of �̂� for locally optimal designs are smaller than those for Bayesian optimal designs. However, the
latter can still ensure that the standard errors of the estimators are small enough and the total biases of the two kinds of
optimal designs are comparable. For both cases, the generalized variances and total biases of �̂� for 𝑑sym2s are the smallest
compared with 𝑑sym’s and 𝑑𝑜’s. Thus, the improvement based on symmetrization is significant. Besides, we select locally
and Bayesian optimal designs 𝑑𝛽 (i.e. 𝑑𝐿𝛽 and 𝑑

𝐵
𝛽
) based on the previous criteria which only focus on the mean. The results

are shown in the last two rows of Table 2(a) and (b). For both local and Bayesian cases, the standard errors of �̂� are smaller
for 𝑑𝛽 . But in an overall sense, most of the results for 𝑑𝛽 are larger than those for 𝑑𝑜, for example the generalized variances.
Hence, 𝑑𝑜 performs better than 𝑑𝛽 and𝐶𝜃-criterion is more effective than the criteria in the literature when the covariance
matrix also needs accurate estimation.
Next, we discuss the effects on the selected optimal designs for cases when the mean and/or the covariance model is

misspecified. To avoid the confusion of the effects of misspecification and cost on the selected design, we consider the case
(𝑐1, 𝑐2) =(0, 0). Three cases ofmisspecified covariance parameter are considered, that is 𝝀

𝑖
𝑚 = �̂�𝑜 + 𝜹

𝑖
1; 𝜸𝑖

𝑚 = �̂�𝑜 + 𝜹
𝑖
2, 𝑖 =1,

2, 3, where𝑚𝑖𝑠1 ∶ 𝜹
1
1 = [−0.1,−0.01, 0, 0], 𝜹12 = [−0.1,−0.1,−0.01, 0, 0];𝑚𝑖𝑠2 ∶ 𝜹

2
1 = [−0.5,−0.05, 0, 0], 𝜹22 = [−0.5,−0.5,

−0.05, 0, 0]; 𝑚𝑖𝑠3 ∶ 𝜹
3
1 = [−1, −0.1, 0, 0], 𝜹32 = [−1, −1, −0.1, 0, 0]. We select the locally general optimal design 𝑑𝐿

𝑜,𝑚𝑖𝑠𝑖

under the single prior (𝝀𝑖𝑚, 𝜸𝑖
𝑚) and Bayesian general optimal design 𝑑𝐵

𝑜,𝑚𝑖𝑠𝑖
under prior space Φ𝑖

𝑚 = {(𝝀
1
+ 𝜹

𝑖
1, 𝜸

2 + 𝜹
𝑖
2) ∶

(𝝀
1
, 𝜸2) ∈ Φ}, 𝑖 =1, 2, 3. Eight cases ofmisspecifiedmodel are considered, that is (𝑝, 𝑑, 𝑞) =(8, 4, 5), (7, 4, 5), (9, 3, 5), (9, 2, 5),

(9, 4, 4), (9, 4, 3), (9, 3, 4), (9, 2, 3). We use the original observations and rescaled time in group A to re-estimate the param-
eters based on the misspecified models. Then for the misspecified models, we regard the estimators as the single prior to
select locally general optimal design 𝑑𝐿

𝑜,𝑚𝑖𝑠𝑗
, or construct the prior space based on the estimators and select the Bayesian

general optimal design 𝑑𝐵
𝑜,𝑚𝑖𝑠𝑗

, 𝑗 = 4, . . . , 11. After obtaining these designs, similar to Singh and Mukhopadhyay (2016),
we compare the 𝑅𝐸s of them relative to 𝑑𝐿𝑜 under �̂�𝑜 which is selected without misspecification. The results are shown in
Table 3. From Table 3(a), the performance of locally optimal design worsens as the degree of parameter misspecification
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1082 YI et al.

TABLE 3 The 𝑅𝐸s (efficiencies) of optimal designs under misspecification relative to 𝑑𝑜 under �̂�𝑜

(a) Parameter misspecification
Case Design (𝑹𝑬)
𝑚𝑖𝑠1 𝑑𝐿𝑜,𝑚𝑖𝑠1

(0.91) 𝑑𝐵𝑜,𝑚𝑖𝑠1
(0.87)

𝑚𝑖𝑠2 𝑑𝐿𝑜,𝑚𝑖𝑠2
(0.88) 𝑑𝐵𝑜,𝑚𝑖𝑠2

(0.91)
𝑚𝑖𝑠3 𝑑𝐿𝑜,𝑚𝑖𝑠3

(0.65) 𝑑𝐵𝑜,𝑚𝑖𝑠3
(0.92)

(b) Model misspecification
Case (𝒑, 𝒅, 𝒒) Design (𝑹𝑬)
𝑚𝑒𝑎𝑛 (8, 4, 5) 𝑑𝐿𝑜,𝑚𝑖𝑠4

(0.89) 𝑑𝐵𝑜,𝑚𝑖𝑠4
(0.91)

(7, 4, 5) 𝑑𝐿𝑜,𝑚𝑖𝑠5
(0.79) 𝑑𝐵𝑜,𝑚𝑖𝑠5

(0.96)
𝑣𝑎𝑟 (9, 3, 5) 𝑑𝐿𝑜,𝑚𝑖𝑠6

(0.99) 𝑑𝐵𝑜,𝑚𝑖𝑠6
(0.86)

(9, 2, 5) 𝑑𝐿𝑜,𝑚𝑖𝑠7
(0.98) 𝑑𝐵𝑜,𝑚𝑖𝑠7

(0.91)
𝑎𝑢𝑡𝑜 (9, 4, 4) 𝑑𝐿𝑜,𝑚𝑖𝑠8

(0.89) 𝑑𝐵𝑜,𝑚𝑖𝑠8
(0.89)

(9, 4, 3) 𝑑𝐿𝑜,𝑚𝑖𝑠9
(0.89) 𝑑𝐵𝑜,𝑚𝑖𝑠9

(0.90)
𝑐𝑜𝑣 (9, 3, 4) 𝑑𝐿𝑜,𝑚𝑖𝑠10

(0.83) 𝑑𝐵𝑜,𝑚𝑖𝑠10
(0.96)

(9, 2, 3) 𝑑𝐿𝑜,𝑚𝑖𝑠11
(0.86) 𝑑𝐵𝑜,𝑚𝑖𝑠11

(0.83)

Note: When there is no misspecification, 𝑅𝐸(𝑑𝐵𝑜 , 𝑑𝐿
𝑜 ; �̂�𝑜) = 0.92. Cases𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟, 𝑎𝑢𝑡𝑜 and 𝑐𝑜𝑣 represent that the first, second, third, and both second and third

submodels in (1) are misspecified, respectively.

TABLE 4 The standard errors of �̂� and the generalized variances of �̂� for MLE and RMLE

MLE RMLE
Design se_lamb det_OC se_lamb det_OC
𝑑ori 4.7179e-10 4.4342e-119 3.4713e-10 2.0171e-119
𝑑𝐵𝑜 4.1626e-10 7.5473e-123 1.9264e-10 1.3548e-123
𝑑𝐵sym 4.2327e-10 1.2728e-123 2.2886e-10 4.5237e-124

increases. With slight parameter misspecification, the locally optimal design performs better than the Bayesian. When
the misspecification is relatively large, the conclusion is inversed. From the local case in Table 3(b), the selected designs
under cases𝑚𝑒𝑎𝑛, 𝑎𝑢𝑡𝑜 and 𝑐𝑜𝑣 become worse. The case 𝑣𝑎𝑟 has little effect on the performance of selected design. For
case 𝑐𝑜𝑣, the performance of the selected design is dominatedmainly by themisspecified autoregressive model. When the
locally optimal design performs well, the Bayesian optimal design will worsen it. However, if the locally optimal design
has a low 𝑅𝐸, the Bayesian optimal design will improve it in most cases.
Finally, we carry out 100 repetitions again to sample observations with true parameters 𝜽𝑡 based on 𝑑ori, 𝑑𝐵𝑜 and 𝑑𝐵sym

under (𝑐1, 𝑐2) = (0, 0) and estimate 𝜽 using the MLE procedure and RMLE procedure, respectively. Following Papageor-
giou (2012), we examine the effect of the underestimation of the innovation variances on the estimation of the diagonal
elements of the true covariance matrix in Supplementary Material A.5. Further, we compare the standard errors of �̂� and
the generalized variances of �̂� with MLE and RMLE in Table 4. Clearly, RMLE entails smaller standard errors of �̂� and
generalized variances of �̂� than MLE. Moreover, with RMLE, the generalized variance of �̂� for 𝑑𝐵sym is smaller than that
for 𝑑𝐵𝑜 , and that for 𝑑𝐵𝑜 is smaller than 𝑑ori. It is consistent with those for MLE. Therefore, these results illustrate that the
selected optimal designs are also suitable for RMLE. Note that for these simulation results in Tables 1–4 and Figure 1,
if one uses different prior space or other sampled observations, the outcomes may be a little bit different, but the main
conclusions stated in the paper still hold.

6 CONCLUSION

For the mean–covariance models, we first show that the trick of symmetrization can generate better designs under the
Bayesian D-optimality criterion. Then, we propose a novel criterion to select the optimal designs of the mean–covariance
models for longitudinal data. We assume that the optimal allocation of the time points is the same for each subject in the
selection process, and there is no missing observation. The proposed criterion is to make the estimations of the mean and
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YI et al. 1083

the covariance matrix more accurate, and the total cost is as low as possible. We give the MSNTO algorithm which can be
used to solve the optimization problem corresponding to the proposed criterion.
Based on the cattle data, we select the optimal designs using MSNTO for follow-up study and discuss the impacts of

different cost parameters, in which larger cost results in a smaller number of subjects and smaller criterion value. We also
show the superiority of the symmetric and symmetrized optimal designs for both local and Bayesian cases. The symmetric
optimal designs and the general optimal designs are comparable. The symmetrized optimal designs perform better. We
compare the locally andBayesian optimal designs.With precise priors, the locally optimal designs have better performance
than the Bayesian optimal designs. However, the latter also performs well. With less precise knowledge, the Bayesian
optimal designs are more suitable. This statement is also illustrated in the simulation with parameter misspecificaiton.
The sensitivity of the Bayesian optimal designs to the parameter intervals is also considered. In most cases, the designs
show good robustness against the prior parameter interval sizes. Moreover, according to the parameter estimation, we
compare the proposed criterion with the previous criteria only focusing on the mean and it shows that our proposed
criterion is more effective. Finally, based on the Bayesian optimal designs, we also use RMLE procedure to estimate the
parameters. It illustrates that the proposed criterion is also suitable for RMLE, which can reduce the bias of the estimate
of the covariance matrix.
More generally, we can further consider the case of missing data. Given a design schedule, there is a possibility that the

measurements may not be collected at some time points for certain reasons. In this case, the criterion for searching the
optimal design should be robust to the measurements that may be missing. It is an important question for further inves-
tigations. In addition, instead of giving numerical designs under the cost constraint only, a further interesting question is
to relate the number of the subjects and the number of repeated measurements to the power of the hypothesis test and
give optimal allocations of them.
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APPENDIX
Proof of Proposition 2.1. Without loss of generality, we first consider the case that the model matrices for the mean are all
the same which only contain polynomial of time, that is 𝑿𝑖 = 𝑿. Denote the marginal covariance matrices corresponding
to𝑀1 and𝑀2 by 𝚺 = 𝑻−1𝑫(𝑻′)−1 and �̃� = �̃�

−1
�̃�(�̃�

′
)−1. The elements of 𝑫 and �̃� are denoted by 𝜎2

𝑗
and �̃�2

𝑗
, respectively,

which satisfy log 𝜎2
𝑗
= 𝒛′

𝑗
𝝀 and log �̃�2

𝑗
= �̃�′𝑗�̃�. The elements of 𝑇 and �̃� are denoted by 𝜙𝑗𝑔 and �̃�𝑗𝑔, respectively, which

satisfy 𝜙𝑗𝑔 = 𝒛′
𝑗𝑔
𝜸 and �̃�𝑗𝑔 = �̃�′𝑗𝑔�̃� . If the time points in the design matrices for𝑀1 and𝑀2 are mutually symmetric, that

is, �̃� = −𝜏, we have �̃�𝑗 = 𝑨𝒛𝑗 and �̃�𝑗𝑔 = 𝑬𝒛𝑗𝑔. Then log �̃�2
𝑗
= log 𝜎2

𝑗
, �̃�𝑗𝑔 = 𝜙𝑗𝑔 and thus �̃� = 𝚺.

Let 𝑨1 is a 𝑝 × 𝑝 diagonal matrix with odd diagonal entries being 1 and even being −1. Due to the fact that �̃� = 𝑿𝑨1,
�̃� = 𝒁𝑨 where �̃� = (�̃�1, … , �̃�𝑛)

′, �̃� = (�̃�1, … , �̃�𝑛)
′, it is easy to show that

|�̃�′
�̃�
−1
�̃�| = |𝑿′𝚺−1𝑿|, |�̃�′

�̃�| = |𝒁′𝒁|, |�̃�| = |𝑾|.
Thus 𝑑𝑒𝑡{𝐼𝜃(𝑛, 𝜏,𝑚)|𝑀1} = 𝑑𝑒𝑡{𝐼𝜃(𝑛, �̃�, 𝑚)|𝑀2}. Further, if the model matrices for the mean also contain other baseline
covariates and the interaction terms with time. Through the assumption that the values of these baseline covariates under
𝜏 equal to those under �̃�. Then the corresponding 𝐴1 is still a diagonal matrix with entries 1 or −1. It is easy to show that
Equation (3) also holds and we omit it here. □

Proof of Theorem 2.2. Let 𝜏 ∈ Δ. It follows from Proposition 2.1 that |𝐼𝜃(𝑛, 𝜏,𝑚)| under 𝝀1, 𝜸1 is equal to |𝐼𝜃(𝑛, �̃�, 𝑚)|
under 𝝀2, 𝜸2. Thus,

∑
Φ |𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 =
∑

Φ |𝐼𝜃(𝑛, �̃�, 𝑚)| 1

𝑝+𝑑+𝑞 . Consider the design 𝜉 = {(𝜏,
1

2
), (�̃�,

1

2
)} for which half of

the subjects are measured according to 𝜏 and half of the subjects are measured according to �̃�. Then 𝜉 is symmetric and
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for the Bayesian case we have

∑
Φ

||𝐼𝜃(𝑛, 𝜉,𝑚)|| 1

𝑝+𝑑+𝑞 =
∑
Φ

||||12𝐼𝜃(𝑛, 𝜏,𝑚) +
1

2
𝐼𝜃(𝑛, �̃�, 𝑚)

||||
1

𝑝+𝑑+𝑞

≥ 1

2

∑
Φ

|𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 +
1

2

∑
Φ

|𝐼𝜃(𝑛, �̃�, 𝑚)| 1

𝑝+𝑑+𝑞

=
∑
Φ

|𝐼𝜃(𝑛, 𝜏,𝑚)| 1

𝑝+𝑑+𝑞 .

The inequality follows from the fact that |𝑮 + 𝑲| 1𝑠 ≥ |𝑮| 1𝑠 + |𝑲| 1𝑠 , where 𝑮 and 𝑲 are positive definite matrices of order
𝑠. □

Theorem 1.6 in Fang and Wang (1994) Let 𝐷 be a closed and bounded domain in 𝑅𝑠 and 𝒕 ∼ 𝑈(𝐷). Suppose 𝒕 have
a stochastic representation 𝒕 = 𝒕(𝝓), where 𝝓 is a �̇�-dimensional random vector with independent marginal p.d.f. 𝑝𝑖(𝜙𝑖) and
c.d.f. 𝐹𝑖(𝜙𝑖). Let  = {𝒄𝑘, 𝑘 = 1,… , 𝑠} be a set uniformly scattered on [0, 1]�̇�. Then the set 𝐹 = {𝒕𝑘, 𝑘 = 1,… , 𝑠}, where 𝒕𝑘 =

𝒕(𝐹−1
1 (𝑐𝑘1), … , 𝐹−1

𝑡 (𝑐𝑘𝑡)) is also uniformly scattered on 𝐷.

Proof of Proposition 4.1. Based on the stochastic representation in (7), we can obtain the Jacobian of the transformation
from 𝒕 to 𝝓,

𝐽(𝒕 → 𝝓) =

||||||||||||||||

𝐵𝜙2⋯𝜙𝑛 𝐵𝜙1𝜙3⋯𝜙𝑛 ⋯ 𝐵𝜙1⋯𝜙𝑛−1 0 ⋯ 0

𝐵𝜙3⋯𝜙𝑛 ⋯ 𝐵𝜙2⋯𝜙𝑛−1 0 ⋯ 0

⋱ ⋮ ⋮ ⋮

𝐵 0 0

1 0

⋱ ⋮

1

||||||||||||||||
= 𝐵𝑛

𝑛∏
𝑖=2

𝜙𝑖−1
𝑖

.

Because 𝒙 is uniformly distributed on 𝑁𝑛+𝑣, we can write the p.d.f. of 𝝓 by

𝑝𝜙(𝝓) = 𝑝𝑡(𝒕)|𝐽(𝒕 → 𝝓)| = 𝐵𝑛

𝑣(𝑁𝑛+𝑣)

𝑛∏
𝑖=2

𝜙𝑖−1
𝑖

,

where 𝑝𝝓 and 𝑝𝒕 represent the p.d.f. of 𝝓 and 𝒕, respectively, and 𝑣(𝑁𝑛+𝑣) is the volume of 𝑁𝑛+𝑣 with

𝑣(𝑁𝑛+𝑣) = ∫
𝑁𝑛+𝑣

𝑑𝒕 = ∫
[0,1]𝑛+𝑣

|𝐽(𝒕 → 𝝓)|𝑑𝝓 = 𝐵𝑛 1

𝑛!
.

Then, we have 𝑝𝜙(𝝓) =
∏𝑛

𝑖=1(𝑖𝜙
𝑖−1
𝑖

). This indicates that 𝜙1, … , 𝜙𝑛+𝑣 are mutually independent and 𝜙𝑗 has p.d.f. 𝑝𝑗(𝜙) ={
𝑗𝜙𝑗−1 1 ≤ 𝑗 ≤ 𝑛

1 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑣
and c.d.f. 𝐹𝑗(𝜙) =

{
𝜙𝑗 1 ≤ 𝑗 ≤ 𝑛

𝜙 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑣
, where 0 ≤ 𝜙 ≤ 1. And the inverse function of

𝐹𝑗(𝜙) is 𝐹−1
𝑗
(𝜙) =

{
𝜙

1

𝑗 1 ≤ 𝑗 ≤ 𝑛

𝜙 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑣
, where 0 ≤ 𝜙 ≤ 1, 𝑗 = 1,… , 𝑛 + 𝑣. Through Theorem 1.6 in Fang and Wang

(1994), we can obtain the 𝒉-transformation in (8). Further, we can also get the inverse 𝒉-transformation from 𝒕𝑘 to 𝒄𝑘,

𝑐𝑘𝑖 =

⎧⎪⎪⎨⎪⎪⎩

[
𝑡𝑘𝑖−(𝑖−1)𝜅

𝑥𝑘(𝑖+1)−𝑖𝜅

]𝑖
𝑖 = 1, … , 𝑛 − 1,[

𝑡𝑘𝑖−(𝑖−1)𝜅

𝐵

]𝑖
𝑖 = 𝑛,

𝑡𝑘𝑖 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑣.

□
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